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16.1 Motivation
The field of socially interactive agents has emerged out of many different approaches to cre-
ate technical systems that can engage in natural human-like conversation, nonverbal commu-
nication, multimodal dialog or emotionally aware interaction. Many of these directions have
grown into research fields in their own right (e.g. Social Signal Processing, Affective Comput-
ing, Social Robotics, Natural Language Processing, Spoken Dialog Systems/Conversational
Agents), with specific foci, methodological approaches, and technologies. In result, the vari-
ety but also the specialization of approaches has been growing. For example, we now have
elaborated methods for the recognition or synthesis of social signals in specific modalities
(e.g. speech, prosody, facial expressions, gaze, or gesture), their fusion to extract semantic or
pragmatic meaning, or the planning of interactive behavior to fulfill emotional or relational
goals. This gives rise to an integration problem as, in social face-to-face interaction, many
of these abilities and skills need to be at work at the same time and in an integrated and co-
ordinated manner [Gratch et al. 2002]. A crucial question is thus not only how the various
capabilities and features of a Socially Interactive Agent (SIA) can be realized technically, but
also how they can come to play together within a functionally complete interactive virtual
agent or social robot.

The present chapter focuses on concepts and methods to realize and integrate approaches
to achieve abilities needed for conversational multimodal interaction. We will thereby go
beyond the usually separate perspectives towards (and solutions for) processing multimodal
input or generating multimodal output. Instead we aim to provide an overview of how such
techniques are mapped out and integrated in current virtual agents or social robots by means
of a suitable interaction architecture. From a practical point of view, an agent architecture
may be regarded as a collection of specialized modules linked together by means of inter-
process communication. From a conceptual point of view, however, it has to answer the
question of how the underlying complex computations that are required to act like a socially
intelligent agent in real-time interaction can be organized and orchestrated. It thus provides the
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underlying structure that provides the constraints and affordances both for how single modules
are to operate, as well as for how the agent as a whole is able to (inter-)act in a consistent,
timely and believable manner, and how it will thus appear as an interaction partner.

Knowing about the challenges, principles and approaches for developing multimodal in-
teraction architectures of SIAs has become increasingly important for researchers and prac-
titioners alike. Interacting with today’s social robots or virtual agents is often characterized
by stereotypical behavior or slow response times, resulting in unnatural clumsiness or disflu-
encies. Human conversational interaction, in contrast, is characterized by an inherent multi-
modality and high responsiveness with which cooperative interactants construct their contri-
butions. For example, even while producing communicative actions, speakers attend to and
elicit reactions from their addressee [Clark and Krych 2004]. Depending on this immediate
feedback, speakers can re-plan the remaining part(s) of their communicative act, adapt it to
the addressees’ needs, put it on hold, interject a sub-dialog, and continue at the point of inter-
ruption. All of this is done in such an effortless, smoothly coordinated and seemingly natural
way that it is not even apparent that difficulties were payed attention to or that plans were
changed mid-way. Thus, acting in a conversation is not solely based on extensive planning
ahead and deep representational models. Instead, interaction partners, while being guided by
overall goals and strategies, are also highly sensitive to the partner’s verbal and nonverbal be-
havior and are able to alter their multimodal utterances accordingly. These abilities are crucial
for human-like fluent conversation – and they imply important demands for how to construct
interactive agents at the architectural level.

In the following, we will start by identifying overarching requirements and criteria for
multimodal interaction architectures. We then review different approaches and concepts that
have been put forward in the fields of (embodied) conversational agents and social robotics.
Finally, we will point out main challenges and directions to be pursued in order to succeed in
weaving the fabric of truly socially interactive and intelligent agents.

16.1.1 Requirements for multimodal interaction
Architectures of social agents or robots are usually designed with a particular functional goal
in mind, such as joint attention, empathy, imitation, or interactive learning [Breazeal et al.
2004, Duffy et al. 2005]. In this chapter we discuss how the specific components and layout
of SIA architectures enable (or hamper) multimodal conversational interaction with a human
user. We start by identifying a number of requirements that an SIA needs to meet in order to
provide multimodal interactivity to its user.

One obvious requirement is the ability to recognize the relevant verbal and nonverbal input
as well as to generate convincing multimodal output. A main distinguishing aspect is thus
the number and kinds of modalities supported when interacting with the agent. Most virtual
interactive agents and social robots have included visual and auditory sensory modalities
(e.g. [Baxter et al. 2013, Dodd and Gutierrez 2005, Kasap and Magnenat-Thalmann 2010,
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Kȩdzierski et al. 2013, Matsuyama et al. 2016]). In addition, few virtual agents [Bosse et al.
2018] but several social robots (e.g. Breazeal et al., 2003; Pepper [SoftBank-Robotics 2021b],
Paro [Shibata 2012]) support tactile stimuli to perceive or produce touch. However, a modality
goes beyond a mere sensory channel and must be considered a semiotic system that affords
certain semantic and pragmatic functions by means of specific displays or signals conveyed
over a certain sensory channel. For example, spoken language as a vocal modality allows
for conveying symbolic content, intonation can add ”analog” acoustic cues of prominence
or stance, and gesture as a visual modality lends itself to communicate indexical or iconic
meaning. Artificial agents may even add other non-human modalities to this. Multimodal
communication, then, arises from the combination and integration of those different ways of
communicating meaning. It thus involves not only the processing and generation of single
verbal and nonverbal behaviors, but also their interpretation and embedding in coherent
multimodal ensembles whose parts are coordinated in form, meaning, or pragmatic function
as well as in their temporal arrangement. The corresponding multimodal coherence and cross-
modal relations are vital for a recipient to be able to resolve the overall intended meaning.

A second requirement, pointed out by Cassell and colleagues [Cassell et al. 2000] in
their seminal work on embodied conversational agent frameworks, is to be able to deal
with behavior in terms of its multiple conversational functions (e.g. conveying content,
representing socially, managing conversation) and based on an understanding of a dialog
state that can involve multiple threads of communication. This relates to the grounding of
multimodal behavior processing into models and representations of (changes of) an interaction
state and the selection of multimodal behavior in order to change this state according to
interaction goals or policies. A related requirement is that multimodal behaviors need to
support a sufficient degree of expressiveness that is needed for the communicative demands
and believability of the human-agent interaction at hand.

Thirdly, multimodal interactions unfold at multiple timescales, from milliseconds between
eye-contact and a head nod, to longer periods of time for utterances or even larger discourse
segments [Cassell et al. 2000]. Across these timescales, multimodal conversational behavior
must be sufficiently fluent and continuous. Unwanted and unnatural lags, hesitations, or dis-
fluencies can lead to interaction problems (e.g. overlapping speech with dialog systems) as
well as ambiguous, incoherent meaning (e.g. when pointing to an object too late). Multimodal
SIAs thus need to be able to manage multimodal behavior in realtime, at multiple timescales in
parallel and with the corresponding fluency. Further, it is often emphasized [Kopp et al. 2014,
Schlangen and Skantze 2011] that fluid conversation hinges upon fast and reciprocal adapta-
tion between the interlocutors. For example, in a multimodal interaction one often has to adapt
one’s own behavior to the interlocutor’s actions in an online and well-timed fashion, e.g. to
keep or take the floor [Levinson and Torreira 2015], to respond to communicative feedback
and interruptions, or to entrain and align with one another [Lakin et al. 2003]. Consequently,
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another requirement for SIAs is fast responsiveness, adaptability, and interruptability in their
multimodal behavior.

16.2 Models and Approaches
A large variety of SIAs have been designed to support some form of multimodal interaction. In
this vein, different architectural approaches to organize and realize the processing of (multi-
) modal input and output have been employed in IVA or SR. Yet, existing systems fulfill
the above-mentioned behavioral requirements only to a partial and different degree. In the
following, we will discuss the architectures that have been developed in relevant fields. They
can be compared and assessed with respect to a number of features:

• Modalities: What is the number and kinds of modalities included, and what is the degree
of multimodal integration (fusion/fission)?

• Methods/components: What are the techniques and approaches used for recogni-
tion/interpretation, generation, and planning of multimodal behavior (at the task level as
well as the social-relational level)?

• Processing structure: How is control and processing organized across different routes
(pathways, streams) or at different levels (deliberative, reactive, associative)? What
is the general way of processing input/output over time (sequential/parallel, chun-
ked/incremental)?

• Interactive adaptivity: Is the social interaction dynamics with its reciprocal feedback
loops taken into account? How are processing and generation connected to support fast
adaptivity? What kind of cross-modal interactions are considered?

• Technical applicability: Is the approach specific to virtual or robotic agents? How
modular, inter-operable and portable is the approach?

In order to provide a systematic overview and to make approaches comparable, we will
characterize them according to which parts of a conceptually “complete model” of multimodal
interaction they support. A schematic of this conceptual model is shown in Fig. 16.1. It
comprises three columns for (1) processing multimodal input, (2) mapping responses, and (3)
generating multimodal output. Each column, in turn, comprises different levels of processing,
from sensory-motor behavior to high-level conversational and socio-relational functions. For
the input column (left-hand side), this relates to the common processing pipeline from sensing
data, to recognizing features or patterns, to interpreting them with regard to meaning or
interactional functions. For the output column (right-hand side), the stages correspond to
a standard generation pipeline [Kopp et al. 2006] that involves determining modalities and
behavioral forms (e.g. words, intonation, gestures, expressions) to fulfill a given intent, turning
them into actual synchronized behavior with the bodily resources of the agent, and finally
acting them out overtly. The middle column maps between input and output at different
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Figure 16.1 Schematic of different processes and pathways in multimodal interaction architectures.

levels of decision-making processes, from reactive (based on hard-wired rules), to associative
(selecting from a given set of alternatives), to deliberative (planning possibly new responses).

It is important to note that different pathways of processing are possible through the
columns and layers (and are actually taken in existing systems). For example, multimodal
signals can be processed up to interpreting a user state that is then mapped via associations to
predefined outputs (circumventing planning of goals, content, or forms). Note also that each
of these boxes can be more or less modality-specific or multimodal. For example, recognition
can work on different modalities separately with specific models whose outputs are combined
afterwards (so-called “late fusion”), or it can work on multimodal data (after an “early fusion”)
to find larger, integrated patterns or features.

In the following, we will discuss different multimodal interaction architectures that have
been applied in SR and IVA. We will thereby characterize them and make them directly
comparable by mapping their architectural components to the schematic shown in Fig. 16.1,
using the same color code to relate specific parts of the architecture.

16.2.1 Embodied conversational or virtual agent architectures
Virtual agents or embodied conversational agents (ECA) are graphically rendered characters
designed to support a human-like conversational interaction with a human user [Cassell 2001].
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Figure 16.2 Example of a single-route architecture for plan-based multimodal behavior: Socially-Aware
Robot Assistant, abbreviated SARA (based on [Matsuyama et al. 2016]). Inset shows a person
interacting with SARA (© 2021 Justine Cassell).

A large number of such agents have been developed, focusing on different kinds of socio-
communicative behavior, abilities, or application scenarios. Throughout this endeavor, a range
of architectural principles and models have emerged.

Single-route architectures Many ECA systems have focused on producing socially appro-
priate multimodal behavior to achieve, e.g., engagement, rapport, trust, or empathy. The archi-
tectural layout consists of a single route with multiple consecutive processing steps, usually
involving high-level state representations and planning-based behavior generation. For exam-
ple, so-called “relational agents” employ specific planners to increase and maintain rapport
with the user [Papangelis et al. 2014] or to achieve long-term engagement [Bickmore et al.
2010]. One example is the proposed SARA architecture [Matsuyama et al. 2016] (Fig. 16.2),
in which a task planner and a social reasoning component are combined with a memory-based
model of the user and previous interactions, as well as with corresponding modules for social
behavior interpretation (here, estimating rapport from utterances, conversational strategies,
acoustic features, and 3D facial landmarks) or behavior generation (natural language gen-
eration, nonverbal behavior generation). Together, these modules form a single deliberative
route of multimodal processing along which the agent produces socially attuned behavioral
responses to complete user inputs. The focus in these systems lies on the functional quality
of the produced behavior, and less on its embedding in a fluent and dynamic conversational
interaction.

Dual-route architectures Complete ECA systems aim to enable an efficient and robust face-
to-face conversational interaction (e.g. Rea [Cassell 2001], Max [Leßmann et al. 2008], or
Greta [Bevacqua et al. 2010]). These systems employ a dual-route architectural layout (see
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Figure 16.3 General structure of a dual-route architecture with parallel deliberative and reactive processing
of multimodal behavior (Inset shows three conversational agents based on this layout: REA
[Cassell et al. 2000]; Greta [Bevacqua et al. 2010] (© 2021 Catherine Pelachaud); Max
[Leßmann et al. 2008] (© 2021 Stefan Kopp)).

Fig. 16.3). As described above, the deliberative route comprises higher-level processes for
reasoning and planning of desired interactive functions and behaviors. This is usually based
on classical natural language processing pipelines in Spoken Dialog Systems, which include
some form of semantic decoding and dialog state tracking, based on which the system output
is determined through some form of (pre-)planned policy. ECAs employ a similar pipeline
but extend it to interpreting and planning multimodal communicative behavior (e.g. gaze,
gesture, body posture, facial expression) for conversational or socio-relational functions (e.g.
dialog grounding, turn-taking, attention, politeness, empathy). The underlying models are
based on dedicated representational and decision-making models, either symbolic and rule-
based (classically) or implicit and learned from data (more recently). A second reactive route,
in contrast, implements more direct mappings from perceptual events to overt behavior. This
route is required to support fast social feedback loops, e.g., in continuous gaze-tracking or
behavioral mimicry (by mapping user location or user movement to animated adjustments of
the agent body). It is also necessary for an agent’s subtle and dynamic expressiveness, e.g.,
through emotional facial expressions (by mapping internal affective states to animated facial
features). Both routes rest on a behavior realization mechanism that is in charge of arbitrating,
combining, synchronizing, and finally producing the eventual output behaviors.

Multi-directional, incremental architectures Many of the existing ECAs build on the dual-
route architecture layout, characterized by concurrent processing along a deliberative and a
reactive route. However, each route itself realises a sequential processing of input/output units
at a corresponding level of abstraction and granularity. The growing awareness of the role of
multimodal behavior in the dynamic grounding of dialog (see Sect. 16.1.1), however, and the
view that ECAs ultimately need to be able to support these mechanisms for collaboratively co-
constructing mutual understanding [Kopp and Krämer 2021], has led to further advancements
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Figure 16.4 Architectural layout for fluid, real-time conversational interaction with multi-directional flow
of information, incremental processing, and prediction-based behavior (Inset: Conversational
agent ”Billie” [Kopp et al. 2018]; © 2021 Hendrik Buschmeier).

at the architectural level. They can be summarized under two key concepts: Multi-directional
flow of information and incremental processing.

Incremental processing has been frequently identified as a key principle for natural dialog
modeling with phenomena such as fluent turn transitions, interruptions, disfluencies, or fast
adaptations to the interlocutor. For example, the ‘How Was Your Day?’ prototype [Crook
et al. 2012] for coping with barge-ins employed a ‘long’ loop for intent planning and a shorter
loop to handle interruptions, back-channel feedback and emotional mirroring. However, the
authors note that the use of incrementality would have made their design more elegant and
efficient. Schlangen and Skantze [Schlangen and Skantze 2011] described incremental dialog
agents in terms of abstract modules that communicate via incremental units (IUs) that are
extended in a step-wise fashion before being finally committed. Several implementations
of this model have been developed and many aspects of language-based dialog have been
successfully modeled within this incremental processing framework (e.g., speech recognition,
natural language understanding [Atterer et al. 2009], dialog management [Traum et al. 2012],
natural language generation [Skantze and Hjalmarsson 2013], speech synthesis [Buschmeier
et al. 2012]). A few recent approaches have tried to apply this principle to process and integrate
multimodal input, e.g., speech and gesture [Han et al. 2018].

The second extension refers to enabling a multi-directional flow of information. This
includes the passing of feedback information from downstream components back to higher-
level modules. The SAIBA (Situation, Agent, Intention, Behavior, Animation) framework
for multimodal generation [Kopp et al. 2006, Vilhjálmsson et al. 2007] provided markup
languages for specifying mltimodal behavior (BML) and its functions (FML) to be processed
by subsequent modules. Additionally, it emphasized the importance of feedback to inform
planning modules about the extent to which their decisions were being realized. Further,
a multi-directional flow of information also refers to information flowing internally from
generation to processing (i.e., from right to left in our schema). It has often been stressed
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that in the brain top-down information helps to bias or prime sensory processing towards
specific information or to resolve ambiguities based on contextual information (cf. [Teufel and
Nanay 2017]). Yet, very few SIA architectures have modeled input processing components to
receive information from higher-level components of the architecture. Nijholt et al. [Nijholt
et al. 2008] proposed a first approach to directly link the timing of an agent’s behavior to the
predicted timing of interlocutor events. This enabled a finer degree of temporal coordination
with the user’s motion, as demonstrated in a dancer agent, a virtual orchestra conductor and
a virtual fitness trainer. The Artificial Social Agent Platform (ASAP) [Kopp et al. 2014,
Van Welbergen et al. 2014] proposed extensions to the behavior markup language (BML)
in order to bidirectionally link sensory input processing and generation of agent’s behavior.

Overall, ECA designed for fluid interaction resolve the strict layout of sequential process-
ing architectures, in favor of a more flexible distribution of processing, both with respect to
the flow of information as well its temporal organization. As illustrated in Fig. 16.4, incre-
mental processing is applied in particular at higher levels of the architecture, where units of
processing (e.g. a full dialog act) are more abstract, arise at a relatively lower rate, and have a
larger temporal scope in the underlying overt behavior.

Behavior generation sub-architectures Work in the field of ECAs or virtual agents has tra-
ditionally focused on the generation of expressive, communicative multimodal behavior. Con-
sequently, a lot of systems and models have been developed to embody the right-hand side of
our architectural schema. Two main approaches have emerged that can be distinguished ac-
cording to what they start out from. On the one hand, classical approaches to multimodal be-
havior generation take some form of communicative intent as input and map it to multimodal
ensembles out of several, mutually coordinated behaviors. On the other hand, an abundance
of recent work has approached the problem of generating multimodal behaviors by starting
out from some already given behavior and augmenting it with additional behaviors in other
modalities. Such a cross-modal mapping approach is, for the most part, driven by speech as
input modality. We will discuss both approaches in the following, also noting how they have
been combined.

Intent-based multimodal behavior generation is generally conceived to comprise a number
of processing steps, similar to the output generation branch of dialog systems. This view has
been formalized within the SAIBA framework to encompass three main stages, corresponding
to (1) intent planning, (2) behavior planning, and (3) behavior realization [Kopp et al. 2006],
along with two XML-based specification languages as interfaces between them (Function
Markup Language FML and Behavior Markup Language BML). Generally, these stages relate
to the subsequent decision steps of determining what to communicate, with which behavioral
forms, and finally how to do it overtly. Intent-based generation, for example, may start from a
speech act representation plus some emotional state or socio-relational goals (stated in FML).
Behavior planning then usually involves natural language generation (NLG) along with the



10 Chapter 16 The Fabric of Socially Interactive Agents: Multimodal Interaction Architectures

Figure 16.5 Examples of sub-architectures for cross-modal, speech-driven behavior generation: (left)
BEAT (based on [Cassell et al. 2004]); (right) Cerebella (based on [Lhommet et al. 2015]).

composition/selection and coordination of appropriate gestures, gaze, or facial expressions.
This problem has been tackled using rule/lexicon-based, planning-based, or data/learning-
based approaches (see also Chapter “Multimodal Behavior Modelling for Socially Interactive
Agents” [Pelachaud et al. 2021] of volume 1 of this handbook [Lugrin et al. 2021]; cf. [Kopp
2013] as well as Chapter 8 of this handbook for an overview), depending on the requirements
and criteria for the targeted behavior (e.g. realism, expressiveness, design effort, real-time
capability, cognitive plausibility). Behavior realization is then in charge of mapping these
multimodal behaviors (usually specified in BML) onto temporally synchronized and coherent
articulations or movements. Much work has focused on developing BML-compliant realizers
for virtual characters (e.g., ACE [Kopp and Wachsmuth 2004], Greta [Bevacqua et al. 2010],
ASAP [Van Welbergen et al. 2014], Smartbody [Thiebaux et al. 2008], or Embr [Heloir and
Kipp 2010]), and several approaches were also extended to more flexible timing and motion
planning for physical robots [Holroyd and Rich 2012, Salem et al. 2012].

Cross-modal behavior generation recently has become popular due to the direct applicabil-
ity of Machine Learning methods to large available datasets on human multimodal behavior.
The predominant approach is to generate nonverbal behaviors (e.g. gestures, head movements,
facial expressions) for a given text or speech output, and the key question is what features are
necessary to map from the verbal modality to others in this way. Early speech-driven gener-
ation systems applied analysis steps (akin to processing user input) to the linguistic output
in order to determine, e.g., speech semantics, information structure, discourse relations or
emotions. This additional information is then used to select appropriate behaviors by means
of empirically grounded but manually defined rules, or data-based mappings [Cassell et al.
2004, Lhommet et al. 2015] (see Fig. 16.5; see also Chapter 7 “Gesture Generation” [Saund
and Marsella 2021] of volume 1 on this handbook [Lugrin et al. 2021]). A key challenge here
is that higher-level semantic or pragmatic aspects are necessary, especially for generating
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Figure 16.6 Typical architecture of a learning-based model for speech-driven gesture generation (Inset:
animated avatar of the “Gesticulator” model [Kucherenko et al. 2020]).

coherent and communicatively meaningful nonverbal behavior like representational gestures
that, e.g., depict visual aspects of an object linguistically referred to. These aspects, however,
are hard to determine or infer from a semiotically different linguistic input.

Other speech-accompanying behaviors such as small head movements, eyebrow raises
or beat gestures, which are less explicitly communicative but nevertheless instrumental for
creating a lifelike impression, have been successfully synthesized by mapping directly from
the acoustic or verbal features of the speech input. One focus is the speech-driven generation
of gesture, for which statistical or, more recently, deep neural network-based models are
applied that have been trained to create some form of encoding of the input features and to map
it to body postures and movements by way of some generators (usually in an auto-regressive
way, i.e. each pose based on the previous one); see Fig. 16.6. Note that these models work in
an end-to-end fashion. That is, they comprise both behavior planning and realization and they
have been used to drive virtual characters as well as humanoid robots. The techniques that
have been explored include probabilistic models [Chiu and Marsella 2011, Ishi et al. 2018],
bi-directional long short-term memory networks [Hasegawa et al. 2018], generative models
[Kucherenko et al. 2020], mixture models [Ahuja et al. 2020], or generative adversarial
networks [Yoon et al. 2020]. Recent approaches have succeeded in producing considerably
natural and consistent multimodal behavior, with current work starting to explore how more
general contextual parameters such as speaker identity or style can help to further increase
output quality (see also Chapter 8 “Multimodal Behavior Modelling for Socially Interactive
Agents” [Pelachaud et al. 2021] of volume 1 of this handbook [Lugrin et al. 2021]).

16.2.2 Social robot architectures
Many architectures, more or less cognitively motivated, have been developed for and imple-
mented in social robots (e.g. [Adam et al. 2016, Baxter et al. 2013, Bono et al. 2020, Breazeal
et al. 2004, Chao and Thomaz 2013, Laird et al. 2012, Moulin-Frier et al. 2018, Trafton et al.
2013]). Interaction between humans and mobile robots involves several complex challenges
that are often absent in the interaction between humans and virtual agents. Given the hardware
constraints, the unpredictability of physical actions and their outcomes in the real-world, and
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the perception challenges posed by the uncontrolled environment, the architectures developed
and tested for virtual agents cannot transfer well to robots, especially to mobile robots that co-
inhabit or collaborate with humans in the physical world. In order to deal with the complex,
high-dimensional, and dynamic domain of human-robot interaction, novel mechanisms for
robust perception-action feedback and flexible handling of contingencies arising from failed
actions or delayed or failed perception are required, in addition to the integration of safety and
privacy-enhancing measures.

In this section, we briefly discuss some of the key interaction architectures that have been
developed and tested on social robots. Their design and the modules they are composed of
depend on the specific interaction goals being pursued. We start by discussing the sensing
and action modalities considered in these works, the interaction goals pursued by them, and
the architectural components designed to realize these goals. Then we will turn, again, to
the architectural layouts employed in social robots. Depending on the number and type of
parallel routes or pathways supported, these can be categorized into single-route, dual-route
and multi-directional architectures. We will provide examples for each type of architecture
and use the schematic shown in Figure 16.1 to highlight the design principles underlying
these architectures.

Sensing modalities Social robots are seldom equipped with only uni-modal sensors for
perceiving the external environment. While laser scanners and ultrasound or infrared sensors
are used to help the robot navigate safely in the physical environment, sensors for vision,
audio and touch are used to perceive information that are especially relevant to initiate and
monitor social interaction between a human and the robot. The visual modality is usually used
to detect objects and persons in the environment and analyze their properties. For example,
Breazeal et al. [Breazeal et al. 2004] used cameras mounted in the eyes of the Leonardo robot
to detect and track the face and facial features of the human interaction partner. Malfaz et
al. [Malfaz et al. 2011] used the robot Maggie’s camera to detect whether there were people
standing near the robot. Tanevska et al. [Tanevska et al. 2019] used the eye cameras of iCub
robot to detect the face and recognize the facial expressions of the human interacting with the
robot. Occasionally, sensors mounted in the environment (external to the robot) are used to
augment the visual capabilities of the robot. Breazeal et al. [Breazeal et al. 2004] used cameras
fitted on walls behind the robot and above the workspace in order to detect and track objects
and people in the broader environment of the robot. More specifically, the overhead camera
was used to estimate the head pose and recognize the pointing gestures made by the human
interaction partner, as well as to detect and track the state of the shared interaction objects
(electric bulbs).

Audio sensors (microphones) are generally used to obtain speech input for automatic
speech recognition in order to understand a limited vocabulary of commands or instructions
given by the humans (cf. [Breazeal et al. 2004, Malfaz et al. 2011]) and to subsequently extract
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pre-defined human communicative intents based on simple rules applied to the text recognized
from speech (cf. [Adam et al. 2016]). In contrast to vision and audio modalities, touch allows
humans to interact with the robot through direct physical contact. Tactile sensors are attached
to different parts of a social robot’s body (e.g. head, shoulders, chest, back, abdomen, etc.)
and they can be used to perceive different properties of human touch, e.g. size of the area
touched, the pressure of the touch, the duration of the touch, etc. Touch is an important
modality for triggering reactive movements or sounds reflecting liveliness, irrespective of
whether the social robot is a humanoid, is animal-like, or has an abstract or hybrid form.

Vision, audio and touch are mostly used separately and serve different perception goals.
Even when they share the same goal, they are often combined in a logical-OR fashion. For
example, Malfaz et al. [Malfaz et al. 2011] used face detection and speech recognition as
redundant channels to determine whether the robot is surrounded by people or is alone.
Tanevska et al. [Tanevska et al. 2019] regulated how comfortable iCub felt during social
interactions depending on whether and how often it saw a face or felt a touch. A fusion
of multiple modalities to infer the state of a human or an object in the environment is not
common, which could be partly due to the challenges involved in synchronizing and matching
the information provided by the different modalities. Perception outputs (or, percepts) are
usually combined with inference rules stored in memory to construct beliefs about the self, the
interaction partner and the objects in the environment, and also to determine the internal states
of the robot, e.g. emotions (cf. [Lisetti and Marpaung 2007]) or comfort level (cf. [Tanevska
et al. 2019]). These beliefs and internal states influence the deliberate behaviors generated by
the robot.

Action modalities The utility of social robots derives from their ability to act or behave
socially in physical environments with human presence. The social behaviors that they can
exhibit depend primarily on the action modalities that it possesses. This in turn depends
on the mechatronic design of the robot. In the case of humans, speech, facial expressions,
head and hand gestures, torso movements, and locomotion constitute the key overt modalities
for expressing social behavior. Humanoid social robots (e.g. Zeno [Hanson-Robotics 2007],
iCub [Metta et al. 2008]) possess several or all of the human social behavior modalities,
however with reduced degrees of freedom (i.e. fewer movable joints), limited ranges of
motion, or alternate types of movements (e.g. locomotion by rolling instead of walking).
Social robots with animal-like appearance (e.g. Leonardo [Breazeal et al. 2004], Miro [Ltd.
2020], Paro [Shibata 2012]) support further action modalities, e.g. the movement of ears or
tail. In addition, social robots, especially non-humanoid robots having an abstract or cartoon-
like appearance (e.g. Pepper [SoftBank-Robotics 2021b]), often possess artificial modalities
based on e.g. color LEDs or display screens. While most social robots are mobile, there are
also stationary social robots, e.g. the Furhat Robot or the robot reeti® [Robopec 2021], which
serve mainly as communicative and expressive robots. The Furhat robot has a 3D facial form
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on to which a human-like face is projected and virtually animated to give an impression of
liveliness. In contrast, the robot reeti® has a head with movable components like eyes, ears,
cheeks, and mouth, all of which can be used to show expressions mechanically. Unlike social
communication, manipulation is a functionality found less frequently in social robots. Hands
and arms, if available, are mainly used for gesturing during single-turn or multi-turn social
interactions. However, there can be social interaction scenarios that require social robots to
pick, place, carry, or hand-over objects. This would require the robot to integrate task planning
and execution in a socially appropriate fashion.

Even when the mechatronic design provides multiple expression modalities, the capability
of a social robot to use these modalities to realize multimodal social behaviors depends on
the behavior generation and control mechanisms that it is programmed with. While most
architectures mention multimodal behaviors, the aspect of temporal alignment of actions
across different modalities is often not dealt with explicitly. Even though some works (e.g.
[Huang and Mutlu 2014], [Yoon et al. 2019]) have created data-driven models to automatically
generate gestures that should accompany speech by learning from annotated human data, these
do not include a monitoring component that dynamically adapts the gestures based on run-
time synchronization issues. Actions involving the movement of multiple joints are usually
defined as a single trajectory in a multidimensional joint space. Although this implicitly
describes the temporal alignment of different joints, it makes it difficult to dynamically adapt
the motion of individual joints, either due to physical errors or due to a need to merge a
new behavior with an ongoing behavior. Such dynamic and seamless adaptation of individual
modalities is crucial for generating fluent and naturalistic robot behaviors. However, the
ability to incrementally generate and dynamically adapt multimodal behavior still remains
elusive to social robots. Having said that, the desired complexity of such behavior generation
and control algorithms would depend on the type of the embodiment used (e.g. animal-
like versus humanoid) as well as the chosen application domain (e.g. therapeutic versus
entertainment).

Single-route architectures The single-route architectures for social robots mostly involve
only an associative route, where sensory data is processed hierarchically to derive values
for internal variables which are then used to select the robot’s behavior from a small set of
pre-defined actions. For example, Tanevska et al. [Tanevska et al. 2019] used a single-route
architecture (see Fig. 16.7) to enable the social robot iCub to adapt its internal drives over
time to the specific user it is interacting with. In order to enable this, they included modules to
evaluate and adapt the dynamic “comfort level” of the robot based on the presence or absence
of multimodal interaction stimuli, namely face and touch. Based on the current comfort level,
the robot decided whether to engage or disengage with the user and accordingly selected the
actions to be performed (behavior selection). The actions involved the movement of different
joints on the head/neck, arms or torso of the robot, and the motion trajectory was adapted
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Figure 16.7 Single-route architecture (based on [Tanevska et al. 2019]) used to allow the iCub robot to
adapt its behavior to the human over time (Inset: iCub robot [Metta et al. 2008]).

according to the information perceived from sensory data (e.g. position of the face). As
can be seen, in this architecture, information flows from multimodal behavior processing to
multimodal behavior generation modules and involves no high-level deliberation or planning.

Early efforts by Breazeal and colleagues [Breazeal et al. 2004] focused on providing social
robots with key social competencies such as establishing joint attention during interaction with
a human. For this, they developed an attention system that determines (1) what the human and
the social robot, Leonardo, are looking at (“attentional focus”) and (2) which objects they
are referring to (“referent focus”) during the interaction. To detect the referent focus of the
human, information obtained through multiple perception modalities, especially speech and
vision, are integrated (see Fig. 16.8). The visual information used includes pointing gestures
made by the human and the eye gaze computed from the head pose. Information about the
attentional and referent focus of the human and the robot are stored in the belief system,
along with the attributes of the objects communicated by the human via speech. Updates to
the beliefs (especially, the focus of the human and the robot) triggers several social behaviors,
e.g. Leonardo would shift its gaze to the location that the human is currently looking at or point
to the object being referred to. The architecture used by Breazeal et al. [Breazeal et al. 2004]
(see Fig. 16.8) to enable such social behaviors is also a single-route architecture involving
behavior/action selection based on beliefs held by the robot.

Dual-route architectures The dual-route architectures for social robots also involve a flow
of information from behavior processing to behavior generation modules, but includes an
associative and a deliberative route. These architecutures should support mechanisms to
arbitrate and coordinate the behaviors generated via the two routes. The Cognitive and
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Figure 16.8 A single-route architecture based on [Breazeal et al. 2004], re-visualized according to our
schematic. This architecture was developed for the Leonardo robot in order to achieve joint
attention between a human and the robot.

Affective Interaction-Oriented Architecture (CAIO) proposed by Adam et al. [Adam et al.
2016] is an example of a dual-route architecture (see Fig. 16.9). It is focused on enabling social
robots to reason about and express its affective state while also performing conversational acts
simultaneously. The dual-route processing is facilitated by the sensorimotor and cognitive
emotional appraisal modules (see Chapter 10 on “Emotion” [Broekens 2021] of volume 1 of
this handbook [Lugrin et al. 2021] for a discussion of emotion models). The sensorimotor
emotional appraisal module maps the conversational acts of the human interaction partner
into a 5-D emotional representation, each of whose dimensions is mapped to specific face
and body expressions by the Multimodal Emotional Action Renderer. This provides for a
relatively short and fast associative route to express the initial emotional response of the
robot to the human. The cognitive emotional appraisal module infers complex emotions (e.g.
gratitude, reproach, etc.) for the robot based not only on the conversational act performed by
the human, but also on the mental states of the robot. The complex emotions feed into a long
and slow deliberative processing route, which involves the selection of the next intention for
the robot, the composing of a plan of actions (conversational acts) to achieve the intention,
and the execution of these actions through verbal and non-verbal modalities. The sensorimotor
emotional appraisal module also evaluates the emotion associated with the conversational acts
being executed by the robot, causing the expressed deliberative behavior to be emotionally
flavored.
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Figure 16.9 CAIO Architecture (based on [Adam et al. 2016]), visualized according to our schematic,
as another example of the double-route architecture that is employed in virtual agents and
in social robots (Inset: (left) NAO robot © 2021 SoftBank Robotics; (right) MACH virtual
conversation coach [Hoque et al. 2013]).

Multi-directional, incremental architectures Most social robot architectures developed so
far focus mainly on multimodal behavior processing (red-colored boxes). Despite a lot of
effort spent on the appropriate design of SR, the automatic generation of multimodal behav-
iors (blue boxes) remains an area that has received relatively little attention. Yet, naturalistic
interactions require social robots to support the generation of interruptible, fluent and sponta-
neous multimodal behaviors (Sect. 16.1.1). That is, as with IVA, we need incremental, multi-
directional architectures, which support incremental processing and exchange of information
between components at all levels vertically, horizontally and diagonally (Sect. 16.2.1. Such
architectures would (i) contribute desirable features like priming and anticipation, which can
fasten and improve the reliability of behavior processing, and (ii) integrate multiple paral-
lel routes for behavior generation (reactive, associative, deliberative) that operate at different
temporal granularity [Kopp et al. 2014]. Recent work focuses on the development of a multi-
directional SR architecture (see Fig. 16.10) that builds on an incremental communication
framework [Schlangen et al. 2010], which was originally created for enabling naturalistic di-
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Figure 16.10 Example of a multi-directional, incremental architecture for enabling lively interactions
between a human and a social robot (based on [Hassan and Kopp 2020, Stange et al. 2019]),
visualized according to our schematic (Inset: (left) Pepper robot © 2021 SoftBank Robotics;
(right) VIVA robot © 2021 navel robotics).

alog management in conversational virtual agents. The architecture was briefly introduced in
[Stange et al. 2019] with a focus on the support for generating verbal explanations for behav-
iors, and in [Hassan and Kopp 2020] with a focus on the structure of its episodic memory.

The aforementioned architecture is being developed as part of a research project aimed at
creating lively SIA for long-term interaction. For this, the architecture (Fig. 16.10) supports
the dynamic modeling of intrinsic needs of the robot (Needs Engine) as well as the inference
of the mental states of the user (User Model) powered by multimodal behavior processing.
An elaborate incremental, multimodal behavior generation pipeline is included to fluently
integrate behaviors at three conceptual levels: (i) fast, reactive behaviors (e.g. mirroring of
facial expressions, tracking a human face, etc.); (ii) previously learned associative behaviors
(e.g. idling when not engaged with the user, performing daily rituals such as greeting the user
in the morning, etc.); and (iii) deliberately planned behaviors (e.g. getting acquainted with a
new user, explaining own behavior to the user, etc.). A decision-making module (Decision



16.2 Models and Approaches 19

Engine) is used to select high-level intents aiming at optimizing the internal needs of the
robots as well as those of the user. The flow of information is supported in multiple directions:
bottom-up, top-down, left-right, and right-left. For example, feedback about the execution
status of actions is used to adapt the selection of high-level behaviors in the future (bottom-
up); the intrinsic needs of the robot are influenced by internal and external events perceived by
the robot (bottom-up) as well as the success of its own plans (right-left); the discourse context
as well as other information in the active memory are used to incrementally update/correct
perception models and resolve ambiguities in perception and interpretation of sensor data
(top-down); multimodal behavior controller purges/adapts certain reactive behaviors (top-
down, right-left); active memory triggers idle behaviors according to the active interaction
mode (left-right); dialog planner uses information gathered from past interactions to adapt
future conversational acts (left-right). These illustrate the rich possibilities that the proposed
multi-directional, incremental architecture would be able to provide to social robots in order
to make them more lively, fluent and naturalistic in their interactions with the user. This
architecture can be used not only for SRs but also for IVAs.

16.2.3 Similarities and Differences of Virtual Agent and Social Robot Architectures
Comparing the multimodal interaction architectures that have been developed and employed
in virtual and robot agents, a number of commonalities but also differences can be noted.
Overall, both kinds of systems have to implement the main columns for processing, mapping
and generation, and to integrate them in a full architectural layout. In both fields, we find
dual/multi-route architectures, which have been developed early on in the field of mobile
robotics and have been adopted also for ECAs and social robots. Likewise, sub-architectures
for online behavior processing or offline behavior generation have been developed and applied
to both kinds of agents (e.g. [Ishi et al. 2018]). Also, multi-directional and incremental
processing has been identified as an over-arching key feature and is addressed in architectures
for both physical and virtual SIAs [Kopp et al. 2014, Stange et al. 2019].

However, a number of differences remain and hence offer opportunities for how one field
can learn from the other. Obviously, one key difference is the physical embodiment of a robot
and the constraints it implies for multimodal behavior processing (e.g. limited abilities to
gather sensory information about a user’s communicative behavior in a dynamic physical en-
vironment) as well as generation (e.g. limited abilities to produce expressive, subtle nonverbal
behaviors under given bodily or kinematic limitations). Consequently, social robot architec-
tures usually have concentrated on dealing with recognition problems (left-hand side of the
schematic model) as well as fast lower-level routes in order to achieve situation-awareness and
robust behavior. Social robots thus provide a great test-bed for embodied approaches to mul-
timodal communication and socially reciprocal behavior coordination. In addition, although
social robot bodies are carefully designed for expressiveness and engagement, their inherent
physical limitations imply interesting challenges for researchers working on real-time gen-
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eration of consistent, synchronized multimodal behavior [Ng-Thow-Hing et al. 2010]. Here,
the transfer and application of behavior realization frameworks from virtual agents to social
robots has led to some advanced generation sub-architectures that rest on closer feedback
loops and more flexible timing and motion planning [Niewiadomski et al. 2013, Salem et al.
2012].

Full-fledged conversational social robots have been rarely reported in comparison to con-
versational virtual agents. Instead, the focus in SR research has so far been to explore process-
ing and control mechanisms required for specific and by design pre-structured interactions be-
tween a human and a robot. Natural conversational interactions with, e.g., fluent turn-taking
is still a challenge of such systems [Skantze 2020]. For example, Adam et al. [Adam et al.
2016] qualitatively demonstrated the integration of emotional appraisal with deliberately cho-
sen conversational acts in order to produce multimodal (speech and gesture) behavior of the
NAO robot [SoftBank-Robotics 2021a] based on an architecture that was initially developed
for a virtual character. Even though Adam et al. [Adam et al. 2016] demonstrated how fast
and slow cognitive processes could be integrated (see Fig 16.9), the interruptability of the de-
liberative or sensorimotor loops e.g. due to new incoming verbal input, was not explored. This
requires a control strategy for managing turn-taking during conversations. Chao and Thomaz
[Chao and Thomaz 2013] proposed the use of Timed Petri Nets (TPN) to regulate the con-
versational floor and thereby handle the dynamic turn-taking process in dyadic interactions
between a human and a robot. Learning from and adapting to a user’s preferences and skills is
a key requirement for social robot companions. Park et al. [Park et al. 2019] used multimodal
affective cues from verbal and non-verbal channels as ‘reinforcement‘ or human feedback to
adapt the storytelling policy of their social robot Tega, to increase the child’s engagement with
the robot and to improve the learning outcomes. These models could be directly applied to
IVAs as well.

16.3 Current Challenges and Future Directions
In our discussion of the requirements of multimodal conversational interaction and the archi-
tectures used to build SIAs that shall be able to engage in it, we have already identified a
number of trends and challenges. Given that the field is relatively young and still exploring
new methods for behavior processing, mapping and generation, these challenges can be ex-
pected to persist for the next decades. In addition, a number of challenges and future directions
can be identified that have or most likely will become crucial and the focus of this upcoming
research.

Interaction memories and learning A core component of modern, learning-based architec-
tures is a memory that aggregates information and makes it available for interaction with self
and others. Memories can be distinguished according to what information they encode, how
much, and how long they can retain it. Technical agent architectures differ in the types of
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memory systems that are included, their representations, the processes that operate on them,
and how the memory influences other components and processes modeled within the archi-
tecture. For example, SOAR [Laird 2008, 2019] and MLECOG [Starzyk and Graham 2017]
include short-term as well as long-term memory (episodic, semantic, procedural), while work-
ing memory plays an important role in the EPIC architecture [Kieras and Meyer 1997]. Like-
wise, cognitive architectures of SIAs often include memory as a key component. For example,
CAIO stores information as long-term episodic, semantic, and procedural memories, but does
not explicitly include a working memory. In [Dodd and Gutierrez 2005], short-term and long-
term memories are used for the ISAC robot, and that includes sensory, episodic, semantic,
and procedural memories. The architecture proposed in [Malfaz et al. 2011] use a long-term
memory for supporting deliberative functions and a short-term memory for storing temporar-
ily relevant information in the social robot Maggie [Salichs et al. 2006]. Kasap and Magnenat-
Thalmann [Kasap and Magnenat-Thalmann 2010] propose long-term and short-term episodic
memories to enable affective interaction between humans and social robots. The virtual agent
SARA stores the adopted conversational strategies in “social history” and the preferences of
and rapport with the user in the “user model” [Matsuyama et al. 2016].

Due to the increasing relevance of learning and adaptation in SIAs, the episodic memory
is receiving growing attention, especially to store and provide access to past experiences and
events. In agent architectures, episodic memories are usually created by filling pre-defined
templates with specific information (cf. (Rabe and Wachsmuth, 2013), [Kasap and Magnenat-
Thalmann 2010]) or by storing sequences of events that occurred while performing tasks (cf.
[Dodd and Gutierrez 2005, Kasap and Magnenat-Thalmann 2010]). These models are quite
restrictive, since the dynamism and complexity of interaction contexts make it difficult to
predict the events that might occur during an interaction episode or the exact time at which
they might occur. Nuxoll and Laird [Nuxoll and Laird 2007] proposed a design space to guide
technical implementations of episodic memories. This could serve as a useful guide for current
and future research on episodic memory models. In [Hassan and Kopp 2020], we presented a
concept for an episodic memory model for storing interaction episodes, which addressed three
aspects of this design space, namely when an interaction episode is encoded, what its content
are and how it is structured. The proposed model represents episodic memory as hierarchies
of labeled time-intervals when a user and an agent were engaged in an active interaction,
initiated by either of the two parties. Relevant internal and external events are linked to the
episodes based on their relationship with the episodes (i.e., causal, goal, or enabler events).
A complete episodic memory model would however require that all aspects related to the
encoding, storage and retrieval of episodic memories are addressed.

Cognitively inspired vs. application-centered architectures Related to the previous topic,
a larger issue for future work will be to identify principles of cognitive architectures that fa-
cilitate social interaction, and to develop them into technical interaction architectures. Over
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the past decades, several architectures have been developed that identify, model, and weave
together different cognitive processes in order to provide artificial agents (virtual agents or
physical robots) with the computational framework for autonomous and intelligent behavior.
Cognitive-psychological architectures include e.g. the widely known cognitive architectures
ACT-R [Anderson et al. 2004], SOAR architecture [Laird 2008, 2019], and CLARION [Sun
2007] as well as the recently developed MLECOG [Starzyk and Graham 2017], which focuses
on motivated learning capabilities. These architectures are generic and have a strong theoret-
ical basis, but they do not focus on social reasoning or the generation of socially appropriate
behavior that evolves over time. More application-centered architectures are usually devel-
oped to meet the requirements and demands of specific use-cases or applications, without
giving much regard to cognitive or psychological principles. These solutions are frequently
met in virtual agents as well as robotic systems and include, e.g., the architectures developed
in [Kasap and Magnenat-Thalmann 2010] and [Dodd and Gutierrez 2005]. However, a com-
mon framework for an architectural layout that meets the requirements for fluent multimodal
human-agent interaction and, in particular, integrates the many components that are needed on
a principled basis is lacking. In particular, the increasing importance of integrating perception,
action, memory, and learning is likely going to raise a need for cognitively plausible architec-
tural concepts. For example, the need for robust and fluent interaction capabilities will require
concepts for incremental yet concurrent and integrated processing at different layers of the ar-
chitecture. Cognitive principles like good-enough reasoning or computational rationality may
have a major play to role in these future systems.

Interaction-aware behavior generation Another important direction for the future, which is
already starting to emerge, is the consideration and integration of the larger interaction context
into local processing sub-architectures. While many works have investigated how background
information such as personality, relational status or cultural background can be taken into
account when processing or generating multimodal behavior (c.f. Chapters 7 on “Gesture
Generation” [Saund and Marsella 2021], 8 on “Multimodal Behavior Modeling for Socially
Interactive Agents” [Pelachaud et al. 2021], 13 on “Culture for Socially Interactive Agents”
[Lugrin and Rehm 2021] of volume 1 of this handbook [Lugrin et al. 2021], and Chapter 18 on
“Adaptive Artificial Person alities” [Janowski et al. 2022] of this volume of this handbook.),
recent work has also started to explore how the current, dynamically changing interaction
context can be integrated. While this has been often reported as crucial in human social
interaction (e.g. for alignment, empathy or coordination), it has only recently and partially
been tackled in technical attempts. For example, the current and previous body pose or facial
expressions of the interlocutor have been integrated into the generation of respective behaviors
of an agent [Ahuja et al. 2019, Jonell et al. 2020]. Those attempts are precursors of what we
would term interaction-aware multimodal behavior generation. It will require new approaches
to combine learning-based with model-based approaches that allow for learning at the level
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of interactional behavioral couplings and to embed this into the incremental processing of
dynamic interactive behaviors.

Uncertainty-awareness in social interaction It is commonsense that systems that are to
operate robustly in real-world environments, which are dynamic, stochastic, or only partially
observable, require uncertainty-aware models. This is also true for SIAs, where uncertainty
arises in the determination of the interaction context, in the inference of the meaning of
social signals, in the attribution of mental states to the interaction partner, or in the prediction
of possible effects of own multimodal behaviors. Uncertainty modeling is thus of special
importance to the processing components of the multimodal interaction architecture shown
in Fig. 16.1, since sensing is bound to be noisy, recognition models are not error-free, and
interpretation is driven by hypotheses formed a under partial knowledge. Noise and errors
also accumulate over successive processing stages in the architecture. This implies that the
mapping components in Fig. 16.1 have to operate with uncertain information to decide, select
or trigger an appropriate behavior of the agent. In the case of SRs, additional challenges for
planning and control arise from the fact that generation components of the architecture have to
deal with uncertain estimates of duration or outcomes of actions. Algorithms and approaches
are available that can be used to handle uncertainties during interpretation (e.g. Bayesian
networks for mental state modeling [Pöppel and Kopp 2018]) or decision-making (e.g.
decision-theoretic planning methods). However, due to the complexity of these approaches
as well as a lack of uncertainty estimates for multimodal sensing and recognition, existing
SIA architectures often tend to ignore the handling of uncertainty during interaction. Recent
efforts to quantify uncertainties associated with data-driven machine learning models and their
predictions (cf. [Abdar et al. 2021]) – inspired by the seminal work of Yarin Gal (cf. [Gal and
Ghahramani 2016, Kendall and Gal 2017]) – address this problem in perception tasks in real-
world applications. Approaches for perception that combine prior knowledge with data-driven
methods within probabilistic frameworks have also been reported recently (e.g. [Seuss et al.
2021]).

Future SIA architectures should focus on integrating uncertainty estimates into the interac-
tion pipeline. That is to say, one should design, implement, evaluate, and optimize probabilis-
tic versions of multimodal SIA architectures in order to promote their successful application in
the real-world scenarios (outside laboratory settings). Furthermore, future human-robot inter-
action research should focus on investigating the influence of uncertainties on social interac-
tion and on using probabilistic SIA architectures to autonomously generate such uncertainty-
aware social behaviors. Finally, SIAs should be able to not only handle uncertainties techni-
cally, but also to create interactive behaviors that can adapt to as well as communicate various
types and degrees of uncertainty.

Evaluation measures A final future direction that is going to become crucial is the devel-
opment of metrics and criteria for the evaluation of multimodal behaviors. In the past and the
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present, the evaluation of multimodal behavior is mostly done by employing human raters in
perception studies, who then rate the behavior for naturalness, coherence or style. There is
a growing consensus in the field that an objective and more systematic evaluation methodol-
ogy is missing and strongly needed (e.g. see [Wolfert et al. 2021] for a review). Further, such
metrics are needed as optimization criteria for the development of machine learning-based
models, which are increasingly trained in an adversarial fashion (i.e. using a discriminator
or critic). Comparison against training data as usually done, however, is insufficient as the
architecture’s ability to generate multimodal behavior in new interaction contexts, in which it
eventually needs to be communicatively effective and successful, cannot be assessed in this
way. First approaches are seen for the evaluation of singular multimodal ensembles, e.g., by
analyzing the internal temporal synchrony or semantic congruency between the modal behav-
iors. Yet, future work will need to investigate how a virtual agent’s or social robot’s long-term
multimodal behavior in a given interaction context can be assessed. Finally, another aspect
crucial in evaluating interaction architectures is how they can be inspected. An important fu-
ture challenge is thus to increase the interpretability and transparency of an SIA architecture,
such that developers as well as users can understand why a certain behavior has been shown.
Indeed, the growing use of black-box machine learning models raises a need for explainable
SIAs, whose interactive behavior can not only be received but also interrogated.

16.4 Summary
In this chapter, we presented the overarching requirements that should be fulfilled by virtual
agent or social robot architectures in order to support fluent and human-expected multimodal
interaction. We discussed several existing architectures for virtual and robot agents, especially
with respect to the modalities they support, the different processing routes they use, and
the aspects of social interaction they realise. We proposed a schematic for organizing the
different modules and pathways in multimodal interaction architectures and categorized
existing architectures into single-route, dual-route, and multi-directional architectures based
on the processing pathways included. While the focus of virtual agent architectures has
been mainly on expressive behavior generation, social robot architectures focused mainly
on multimodal behavior processing and robustness. Either field is hence characterized by
individual strengths and limitations. Although approaches are increasingly applied to both
kinds of SIAs, the methods and models developed could inspire and inform each other
even more to yield architectural principles and frameworks that enable advanced multimodal
interaction capabilities to become standard in the field of SIAs.

Overall, the field has explored a variety of modalities, techniques, and integration architec-
tures — and is still extending its repertoire of approaches for specific generation problems.
Future work will need to consolidate our views on what we can generate, whether increas-
ing data will help, how to join different approaches (and motivations), and what we should
optimize models for (behavior quality metrics and felicity conditions). Future work should
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also focus on developing learning-based models that afford representations and interaction
memories that can dynamically scale to heterogeneous data of different formats and temporal
resolutions, and can enable an SIA to process, interpret, and learn from long-term interaction
data in order to re-evaluate the social-appropriateness of behaviors based on past experiences.
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