
Author note:

This is a preprint. The final article is published in 

“The Handbook on Socially Interactive Agents” by ACM.

Citation information: 

S. Gillet, M. Vázquez, C. Peters, F. Yang, and I. Leite (2022). Multiparty Interaction Between Humans and Socially Interactive 

Agents . In B. Lugrin, C. Pelachaud, D. Traum (Eds.), The Handbook on Socially Interactive Agents – 20 Years of Research on 

Embodied Conversational Agents, Intelligent Virtual Agents, and Social Robotics, Volume 2: Interactivity, Platforms, 

Application (pp. 113-154). ACM.

DOI of the final chapter: 10.1145/3563659.3563665 

DOI of volume 2 of the handbook: 10.1145/3563659

Correspondence concerning this article should be addressed Iolanda Leite iolanda@kth.se

Multiparty Interaction Between 
Humans and Socially Interactive Agents

Sarah Gillet, Marynel Vázquez, Christopher Peters, 
Fangkai Yang, and Iolanda Leite 



17 Multiparty Interaction
Between Humans and
Socially Interactive Agents
Sarah Gillet, Marynel Vázquez, Christopher Peters, Fangkai Yang,
Iolanda Leite

17.1 Motivation
While most research has focused on one-on-one interactions, Socially Interactive Agents
(SIAs) for multiparty interaction have received increasingly more attention in the past years
for a number of reasons. First, multiparty social interactions are often more unstructured
but also more likely to resemble real-world situations. As these agents move from lab
environments to the real world (e.g., museums, hospitals or classrooms), it is important that
they can handle the different types of social situations that may arise. Second, human social
behavior is largely dependent on social context, for example, the way we behave alone is
different from how we behave in a group [Zajonc 1965]. For this reason, we cannot directly
assume that empirical findings, computational models, etc. from one-to-one interactions
between users and SIAs will hold in a multiparty setting.

When compared to one-on-one interactions, multiparty settings pose additional challenges
for humans. Thus, it is no surprise that they can also be more challenging for SIAs. The core
capabilities in this domain are no less social than at the individual level, but typically relate
to space management, formation control and navigation. Additionally, questions such as how
the agent behavior and appearance can positively affect group dynamics (e.g. collaboration
or teamwork), as well as users’ subjective experience (e.g. perceived presence or trust) are
relevant to explore in a multiparty context. Therefore, robust multiparty interactions involve
a large set of competencies to some degree, combining the challenges from one-on-one
interactions while also raising new challenges. For example, conversational management
can become more difficult with more participants in aspects such as turn-taking, verbal and
non-verbal communication. When considering embodied agents, how should these agents
position and orient themselves within the group such that they can equally participate in the
interaction? Finally, when it comes to perception, so far, little is known about how perception
models perform when they are tested in a group size different than the one they were trained
on. However, this feature is critical for some perception problems, i.e., the way in which an
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2 Chapter 17 Multiparty InteractionBetween Humans and Socially Interactive Agents

agent should interpret a user glancing to the side is different if that user is alone or if the user
is in a group.

One can consider interactions between humans and SIAs to take place at three levels:
crowd, group, and individual levels [Panzoli et al. 2010]. Research to date has been focused
in separate strands on the crowd and individual levels, but modeling multiparty interactions at
the level of small groups (the main focus of this chapter), has not received as much attention
in the literature; yet, it is crucial for more natural interactions in many real-world situations.

Another important differentiation relates to whether SIAs are static or mobile within
the environment. The former case relates to situated social gatherings that take place in a
specific location, for example in the case of free-standing conversational groups, in contrast to
those situations in which participants move together through an environment toward a shared
destination. Our focus in this chapter will primarily be on the former case, in which the group
is in a static position within the environment. It should be noted that, even in cases in which
the group might be considered to be static in its locale, individual agents may still have some
mobility. This may be due, for example, to individuals changing their positioning within a
formation during the course of an interaction to accommodate newcomers or re-form due to a
departure of a group member.

This chapter surveys recent work on multiparty SIAs, focusing on small group interactions
or social gatherings (with multiple humans and/or multiple agents). We begin by introducing
models and approaches from other disciplines and then summarize the recent advances in
multiparty interaction with both Intelligent Virtual Agents (IVAs) and Social Robots (SRs).
We then summarize some of the main similarities and differences between IVAs and SRs in
multiparty interaction, in an attempt to establish synergies between the two communities. We
conclude by discussing current challenges and future research directions.

17.2 Models and Approaches
This section serves as an overview on models, approaches and background knowledge from
other disciplines that are commonly used in research concerning multiparty SIAs.

Social Gatherings
In social psychology, gatherings correspond to a set of individuals who are in one another’s
immediate presence [Goffman 1963]. Unfocused gatherings are typically associated with
mere co-presence, such as pedestrians on a street or strangers waiting for a bus. Focused
gatherings are instead characterized by individuals coming together to sustain one focus of
attention.

According to Kendon [1988], there are two main types of focused gatherings. If there is
a joint responsibility between the people in a gathering to cooperate to sustain a focus of
attention, the interaction is considered a jointly focused gathering. Examples include social
conversations, ping-pong games, dancing partners, and groups of workers cooperating to solve
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a task that requires sustained attention. When there is no need for shared cooperation to sustain
the focus of attention, the interaction is rather considered a common focused gathering. For
instance, common focused gatherings include a platoon on a parade or pupils paying attention
to what a teacher says in a classroom.

Information is given voluntarily during gatherings, e.g., through what people say. In addi-
tion, information is given off whether the interactants choose to provide it or not. As Kendon
[1988] described, this is an inevitable and unavoidable product of people’s presence and of
their actions. For example, groups of people might provide additional information through
their gaze or spatial patterns of behavior. While the latter aspects may seem unimportant in
comparison to the information that is provided voluntarily, they play a key role in structuring
social encounters.

Situated human conversations have traditionally been considered the most common type of
jointly focused gatherings [Kendon 1990]. The members of these gatherings converse in one
another’s immediate presence. They work cooperatively to sustain their focus of cognitive and
visual attention, pursuing a common line of concern. The cooperative nature of conversations
means that they often end when a participant has the turn to speak but, for some reason, he or
she does not do it.

Groups and Teams
An important distinction is often made between gatherings involving groups of agents and
teams [André et al. 2020]. Groups correspond to agents that are aware of having a shared
identity. Meanwhile, teams are more specific. They are groups in which the agents have a
shared goal or task [Groom and Nass 2007]. Team members collaborate and support each
other to accomplish their joint goal(s). Worth noting, the success of teams is not a given. Team
characteristics such as member’s perceived inclusion [Jansen et al. 2014] and psychological
safety [Edmondson 1999] are typically associated with effective teams. Readers interested in
a broader discussion of team performance from an organizational psychology perspective are
encouraged to refer to [Guzzo et al. 1995].

Proxemics
An important aspect of social gatherings pertains to people’s use of physical space, or
proxemics as coined by Hall [1966]. Hall described four distance zones typically used by
people during interactions. These zones correspond to the intimate, personal, social, and
public distances that people tend to keep from each other based on their emotional state
and type of social engagement. The intimate distance is short, affording physical interaction.
Personal distances are often kept by friends or family when conversing, whereas social
distances are more common for acquaintances during situated social gatherings. Finally,
the public distance is well outside an individual’s circle of personal involvement, typically
emerging during public addresses. Several factors are known to influence human proxemics,
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Figure 17.1 Spatial arrangements typical of F-formations: (a) face-to-face arrangement; (b) side-by-
side arrangement; (c) L-shaped arrangement; (d) semicircular arrangement; (e) circular
arrangement. Dashed areas represent o-spaces. [Adapted from Vázquez et al. 2016].

including lighting [Adams and Zuckerman 1991], cultural factors like social norms, peoples’
familiarity with one another, and to what degree people interact together [Argyle 2013].

Face-Formations in Social Conversations
During conversations among free-standing people, the participants position themselves to
create a sort of “no-man’s land”, maintaining a separate world from their surrounding [Kendon
1990]. The result is a distinct spatial organization, typically known as a face formation or F-
formation in short within social psychology. F-formations maximize the opportunity of the
interactants to monitor one another during conversations. They also help maintain groups as
spatially distinct units from other nearby focused gatherings.

Kendon [1990] described the emergence of F-formations and their structure based on
observations of social events. F-formations begin when the members of a group position
themselves such that their transactional segments intersect. These segments correspond to the
physical space in front of each person. They correspond to the space into which individuals
look and speak, or into which they reach to handle objects relevant for their current task.
People will work to maintain their transactional segment free of intrusions for as long as they
are engaged in an activity that requires it.

The physical area where the transactional segments of the members of a conversation
intersect is the o-space of the corresponding F-formation. As shown in Figure 17.1, the
o-space is in-between individuals in a group, whether they are standing in a face-to-face
arrangement or in semicircular or circular formation.

The spatial organization of the participants of a gathering often reveals transitions between
social conversations and other types of interactions. For example, F-formations often trans-
form into a less uniform spatial arrangement when a conversation shifts into a common focus
encounter [Kendon 1990, Marshall et al. 2011]. When the focus of attention becomes a par-
ticular person, a separation between this interactant and the rest of the group is often observed
due to a difference in social status or role.
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Other Group Phenomena
F-formations are one type of group phenomena that emerges during social gatherings, but
other important phenomena relate to group social influence. For example, conformity [Crutch-
field 1955] concerns agreement to the majority position within a group. Kelman [1958] dis-
tinguished between three processes that result in group influence: compliance to fit in within
a group; identification which results in compliance to establish or maintain a desired relation-
ship within a group; and internalization which occurs when the adopted ideas or behavior is
intrinsically rewarding.

Other related group phenomena in multiparty human interactions include diffusion of
responsibility [Darley and Latané 1968] and group polarization [Myers and Lamm 1976]. The
former phenomenon is said to emerge when the likelihood of people taking the responsibility
for action or inaction is reduced in the presence of others. The latter phenomenon results in
groups making more extreme decisions than their individuals would in isolation.

Relevant concepts frequently used in the social sciences to study group dynamics [Abrams
and Rosenthal-von der Pütten 2020] comprise: Ingroup identification, the individuals’ per-
ception of themselves as member of the group [Ashmore et al. 2004, Leach et al. 2008];
cohesion, the inside perspective on the forces that keeps the group as a group [Dion 2000];
and entitativity, the outside perception of the groupness of a social group [Campbell 1958].

A phenomenon that not necessarily arises from but might influence small group interac-
tions is ingroup-favoritism. Ingroup-favoritism has been phrased by the findings that people
tend to act more favorably toward ingroup members than toward outgroup members [Brewer
1979, Tajfel et al. 1971].

17.3 Advances in Multiparty Interaction
The development and evaluation of SRs that can interact with groups of people has been ex-
plored in several domains. In the following sections, we review different aspects of multiparty
interactions and the respective capabilities of SIAs.

17.3.1 Evaluating and Understanding Groups
Group dynamics encapsulate the influential actions, processes and changes that are observable
within and between groups. Group dynamics change the individuals in the groups in which
they occur and, potentially, even their society [Forsyth 2018]. This makes the study of groups
and group dynamics interesting for creating SIAs.

The next sections discuss research on multiparty interaction regarding the believability of
SIAs in group settings, users’ attitudes toward these agents, and spatial group behavior. We
also discuss prior efforts aimed at understanding human-agent group dynamics.
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Measuring Believability
Human perception studies have been used to evaluate the behavior of small groups of virtual
characters, often focusing on human sensitivities to different behaviors and their impact
on believability or perceived naturalness of the group. These include studies investigating
whether people are more sensitive to similar appearances or motions in a group of characters
when perceiving their variation [McDonnell et al. 2008], the number of agents per group
and distribution of groups that appear to be the most realistic in crowd situations [Peters and
Ennis 2009] and the degree to which people are able to see groups in a crowd as the camera
viewpoint and crowd density are varied [Yang et al. 2018].

McDonnell et al. [2009] investigated human sensitivity to the coordination and timing of
conversational body language in small groups of virtual characters, and concluded that partic-
ipants are sensitive to desynchronizations in the turn-taking behavior across group members.
Ennis et al. [2010] investigated sensitivities to desynchronizations of body motions, gestures
and voices in small groups and found that viewers were most sensitive to desynchronizations
of full-body motions.

Measuring Attitudes
Different behaviors employed in SIAs interacting in multiparty environments have been
shown to affect the perception on themselves. In the following paragraphs, we review studies
that evaluate attitudes toward SIAs.

The study by Cafaro et al. [2016] investigated the interpersonal attitudes (friendly versus
unfriendly) of agents within a small group and toward an approaching avatar and found that
the interpersonal attitude of the group had an impact on the proxemics behavior of the avatar.
Further, it was found that the attitude of the group toward the approaching avatar had a major
impact on social presence evaluations. Pereira et al. [2014] created a case study in which a
social robot plays the Risk board game against three human players in order to investigate if
the agent was perceived to be socially present.

Fraune et al. [2015a] examined how humans respond to different numbers of robots (one
versus three) with different social capabilities (social versus non-social) in a naturalistic
scenario of robots acting as trash collectors. When robots were acting in a sociable manner
toward another robot, they were perceived as more anthropomorphic. If the same robots were
acting sociably toward humans, positive attitudes and emotions, the willingness to interact and
encountered physical proximity were improved [Fraune et al. 2020]. In a different multirobot
environment, Tan et al. [2019] found that the sociability of a pure functional robot can be
increased through witnessing social robot-robot interaction.

Humans but also robots can be seen as members of an ingroup or outgroup [Kuchenbrandt
et al. 2011]. The introduction of a robot as ingroup versus outgroup was found to increase the
positive perception of the robot [Kuchenbrandt et al. 2013] and social categorization has been
found to play an important role when perceiving the robot as an ingroup or outgroup [Eyssel
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and Kuchenbrandt 2012]. When humans are paired with robots in a competitive game humans
perceive their own team as an ingroup and the other human-robot team as outgroup. Allocating
painful noise bursts to ingroup and outgroup humans and robots revealed that humans develop
ingroup favoritism for robots over humans as they prefer ingroup robots over outgroup
humans [Fraune et al. 2017b].

Cultural aspects as well as gender and personality are important components in multiparty
interactions involving SIAs. Endrass et al. [2011] focused on how human observers perceive
culture-related differences for groups of two virtual agents engaged in small talk i.e. informal
discourse behaviors. The results from a study are used to inform a model for the automatic
generation of culture-specific small talk dialogs for virtual agents. Mascarenhas et al. [2016]
found participants prefer those group of IVAs that display the same cultural bias (individual-
istic versus collectivistic) as present in their own culture. Damian et al. [2011] developed a
software framework that allows IVAs to display differences in personality and gender which
also influence group formations.

In general, the results from these studies are intended to inform the creation of more
believable and effective group behavior generation models [Huerre et al. 2010].

With an increasing number of SRs present in everyday and work environments, robots
are to be expected to work in teams with humans. Specifically when humans and robots
partner in teams against another human-robot team, aspects of the robot behavior have shown
to be influential on the group. When robots show different orientation goals (competitive
versus cooperative), interaction patterns differ in terms of socio-emotional support and gaze
behaviors [Oliveira et al. 2018]. Further, expressing different levels of warmth and comfort
has shown to influence feelings, perceptions and future intent to work with the robot [Oliveira
et al. 2019]. In addition, a robot expressing group-based emotion in this kind of setting can
lead to higher group identification, group trust and likeability of the robot [Alves-Oliveira
et al. 2016, Correia et al. 2018]. As a different aspect of the human-robot partner interaction,
Correia et al. [2016] found that previous encounters with the robot partner positively influence
trust toward this robot over the course of a game. From a theoretical point of view, de Visser
et al. [2019] propose a human-robot team trust model that builds upon relationship equity and
aims to ensure longitudinal trust.

The appearance of robots and groups of robots has been found to have influence on
the attitudes toward those. Influence on the perception of robot groups was found based
on different robot types - mechanomorphic, zoomorphic, and antromorphic. An interaction
between type and perception of groups versus individual robots was reported by Fraune et al.
[2015b]. Further, entitative robot groups were perceived as more threatening than diverse
groups [Fraune et al. 2017a] and a correlation between the perception of entitativity of the
robot group and fear toward this group was found [Fraune et al. 2019b].
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Figure 17.2 Spatial behaviors have been studied among SRs and IVAs. The left image shows IVAs
positioned in formation accounting for social spaces with O-, P- and R-spaces illustrated
[Adapted from Yang and Peters 2019c]. The other two pictures illustrate F-Formations with
a furniture robot. The middle image shows the circular arrangement during a social role-
playing game [Vázquez et al. 2015]; and the right image the circular arrangement during a
brainstorming activity with the robot [Vázquez et al. 2017].

Spatial Behavior Understanding
Other studies have investigated group formations and behaviors taking place within the group.
A study by Ennis and O’Sullivan [2012] indicated that participants were sensitive to the
distance and orientation of individual agents in social formations.

The study by Carretero et al. [2014] explored the impact of task-irrelevant background
expressions on the perception of emotional expressions of a small group of foreground char-
acters and found that a consistent impact of task-irrelevant negatively valenced background
stimuli on the perception of the emotions of the foreground task-relevant group of characters.

Palmberg et al. [2017] conducted a study investigating the impact of facial expressions and
full body motions on the perception of intense positive and negative emotional expressions in
a group of three virtual characters and found that the emotional valence of facial expressions
had a stronger impact on the perception of emotions in the group than body motions.

Understanding spatial behavior has also become increasingly important in human-robot
interaction. Several factors can influence the level of comfort that people have with robots and,
thus, the distance that they like to maintain from them. For example, these factors include a
robot’s gaze [Mumm and Mutlu 2011, Ruhland et al. 2015] and personal experience with
pets and robots [Takayama and Pantofaru 2009]. In regard to spatial behavior typical of
conversations, several efforts have provided evidence of the emergence of F-Formations in
HRI [Bohus et al. 2017, Huettenrauch et al. 2006, Vázquez et al. 2014, 2015, 2017]. The
distancing between robots and group members during F-formations might be influenced by
the specific embodiment of the robots, although more research is needed to systematically
understand such potential effects. Figure 17.2 illustrates how humans build F-Formations
when interacting with a robot and how virtual agents position themselves socially.
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Interestingly, Kuzuoka et al. [2010] showed that a robot can influence the body orientation
of a museum visitor by rotating its own body. This suggests that people may adapt to robots’
spatial patterns of behavior in a similar manner as they adapt to human spatial behavior during
situated conversations. Further, Yousuf et al. [2012] and Vroon et al. [2015] investigated
suitable social positioning behaviors for mobile robots during social interactions.

Understanding Group Dynamics
A different set of works has investigated how SIA behavior affects the human group members
or how groups of SIAs can affect human behavior.

How an SR could interact with groups of people in a museum or shopping mall was early
investigated by Bennewitz et al. [2005] and Kanda et al. [2010]. Asking which kind of groups
of people would interact with a robot in an open setting such as a shopping mall, Fraune et al.
[2019a] found that highly cohesive groups engaged in longer conversations with the robot and
acted more socially and positively toward the robot. Further, people who were by themselves
unlikely to approach the robot were encouraged through the group and the group’s norms to
interact with the robot. When groups of people and robots interact in a prisoner’s dilemma, it
was shown that the number of people in the group significantly affected cooperative behavior
[Chang et al. 2012]. In this experiment, those who interacted individually with the robot
cooperated more with the robot than those interacting in pairs. However, the number of robots
that pairs or individuals interacted with did not affect cooperation. When interacting with
either one or three robots, individuals and groups, further, showed more competitive behavior
when interacting with the same number of robots [Fraune et al. 2019b].

The influence of the group of robots that a human joins when making decisions was studied
under the aspect of conformity and peer pressure. Where adults as opposed to children did not
conform to a group of robots when the answer was unambiguous [Brandstetter et al. 2014,
Vollmer et al. 2018], adults could be convinced by a group of robots if there was no objective
correct answer [Salomons et al. 2018]. A further finding of this work indicates that the level
of conformity depends on the level of trust toward the group of robots, here influenced by
the correctness of the robots’ decisions. Considering the aspect of cultural differences, Wang
et al. [2010] have shown that the way a robot can influence group decisions can be depending
on the cultural origin of the participants. Exploring conformity from a robot’s perspective,
Tokumaru [2019] investigated how conforming robots influence human decision-making. As
one aspect of non-verbal behaviors, human-like gaze patterns directed toward two listeners
during a story-telling task have been found to help story recall [Mutlu et al. 2006] and to
increase the persuasive power of a robot [Ham et al. 2011].

Intentional group coordination is occurring when a group of humans joins in a cooperative
group task such as dancing. One and two robots joining the coordinated group task have been
shown to affect the group dynamics [Iqbal and Riek 2017b].
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Addressing the question of team performance, backchanneling has been found to ease
cognitive load and stress in a complex task [Jung et al. 2013]. With the goal of improving
small-group decision-making meetings, Shamekhi and Bickmore [2019] investigated how a
robot could act as a facilitator. Moving to education environments, Rosenberg-Kima et al.
[2020] explored the potential of a robotic facilitator for small-group learning in higher
education and compared it to teacher and tablet facilitation.

Like work teams, groups of family members have been studied. A robotic therapist has
been shown to improve intimacy and positive affect between romantic couples [Utami and
Bickmore 2019]. Short et al. [2017] explored how a socially assistive robot could support
intergenerational family groups, i.e. older adults in these groups. In a different family setting,
Gvirsman et al. [2020] explored how the triadic interaction between toddler, caregiver and
robot can be beneficial for early second language learning.

By giving virtual agents the possibility to use different physical appearances, Reig et al.
[2020] found that personalization could be exploited when interacting with multiple users by
exploring the concept of re-embodiment and co-embodiment.

Influencing Group Dynamics
As different works discussed in the previous sections have also found effects on group dy-
namics, research interests have been targeted at robots and their behaviors that can positively
influence the dynamics in a group of humans. This influence can be twofold and either im-
pact how humans act among each other or toward the robot. The robot’s efficacy has been
discussed for different aspects of group processes. In the following, situations of conflict, in-
clusion, collaboration, robot abuse and conversation will be discussed with the approaches
taken to improve these situations with the help of SIAs.

Different roles that an SR might take in a group set-up have been explored, and Engwall
et al. [2020] discuss four roles that a robot could take in a triadic language café setting. To
improve conversations and meetings, SRs have been employed as facilitators. With the goal of
balancing participation, Matsuyama et al. [2015] proposed a facilitation model incorporating
the robot as a fourth participant, and Shamekhi and Bickmore [2019] investigated how a
meeting facilitator could in addition ensure an efficient meeting. With the same goal in mind,
another work used a microphone-shaped robot - Micbot. Micbot was shown to be able to
balance the engagement of a group of three and thereby achieve higher group performance
[Tennent et al. 2019]. The robot could encourage passive members to participate more actively
with non-verbal and indirect cues executing two distinct behaviors - follow and encourage. By
employing a robotic object as a side-participant [Hoffman et al. 2015] in a debate, Rifinski
et al. [2020] found that minimal movement implying gaze and leaning can improve the
interaction and the interpersonal evaluation. In an application in a virtual city, balanced theory
has been found to be applicable when a virtual agent mediated a conversation between two
avatars and influenced the attitudes toward itself [Nakanishi et al. 2003].
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Figure 17.3 Different works investigated how a robot could influence the dynamics of a group, in this
case, the robot Cozmo by Anki mediates an interaction among children and aims to foster
collaboration and inclusion [Gillet and Leite 2020].

Taking a different role in the group setup, robots have been used as mediators in conflict
situations. For example, a robot could promote more constructive conflict-solving behavior
in cases of object possession conflicts among children [Shen et al. 2018]. When personal
violations cause a group conflict, a robot acting as an emotional regulator was found to
regulate and call attention to a conflict [Martelaro et al. 2015]. The role of IVAs for mediating
conflict was explored in a debriefing scenario [Haring et al. 2019].

Moreover, different works have explored how to facilitate collaboration and group cohe-
siveness by comparing task-focused and group-focused robot behavior. Thereby, a robot that
was employed in the role of moderator displaying performance reinforcing (task-focused) be-
havior increased group cohesiveness [Short and Mataric 2017]. The study indicates that the
intuitively contradicting results are leveraged by the robot addressing participants more evenly
when displaying task-focused behavior. To improve human-human collaboration among chil-
dren, relation-reinforcing utterances have been found to enhance the perception of team per-
formance [Strohkorb et al. 2016]. But neither task-reinforcing nor relation-reinforcing robot
behavior was found to influence short-term group cohesiveness.

Addressing the problem of inclusion of an outgroup participant, Sebo et al. [2020] explored
different strategies on how an SR could be employed to support the process of inclusion. To
support the inclusion of children that newly arrived in a country, Gillet et al. [2020] developed
a robot-mediated music-mixing activity that allows the robot to perceive group dynamics and
act upon them. The music-mixing activity is shown in Figure 17.3.

As an important factor in groups, the level of trust in a mixed human-robot group has been
found to be influenced by a robot verbally expressing vulnerability. This expressed vulnera-
bility produced a ripple effect throughout the group which increased trust-related behaviors
within the group [Strohkorb Sebo et al. 2018] and improved conversational dynamics [Traeger
et al. 2020].
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Figure 17.4 Two scenarios in which Cozmo robot(s) by Anki aim to influence a human bystander such
that (s)he intervenes to stop robot abuse by a confederate. [Adapted from Connolly et al.
2020, Tan et al. 2018]

Work on conformity and group social influence has also inspired efforts on prompting
human bystanders to intervene in robot abuse [Connolly et al. 2020, Tan et al. 2018]. This line
of work has shown that the reactions of the abused robot can influence how much bystanders
perceive adversarial actions toward robots as mistreatment. Further, it suggests that emotional
group robot responses can increase bystander interventions in comparison to when they ignore
the abuse. Figure 17.4 illustrates examples from this line of work.

17.3.2 Automatic Perception of Group Dynamics
For SIAs to be successfully deployed in multiparty social settings, they need to be aware of
their surrounding environment and social context [Jung and Hinds 2018].

The F-Formation theory discussed in Section 17.2 also inspired work on automatic group
perception, both from a model-based [Vázquez et al. 2015, Vázquez et al. 2017] and data-
driven perspective [Hedayati et al. 2019, Swofford et al. 2020]. These methods demonstrated
automatic detection of F-formations involving humans and robots and are illustrated in Fig-
ure 17.5. One of the challenges of group perception is feature extraction, especially when
considering real-world environments. In this respect, Mead [2016] proposed a framework in-
cluding different features (individual, physical and psychophysical) that can be automatically
extracted and used to recognize proxemics and other social behaviors in HRI, e.g., interaction
initiation and termination.

From a perception perspective, it is also important to recognize addressees in groups.
Methods have leveraged sound source localization [Nakadai et al. 2008], visual focus of
attention [Sheikhi and Odobez 2012, Sheikhi et al. 2013], and combinations of this data
[Okuno et al. 2001, Vázquez et al. 2016]. Further, fusion and tracking of participants in
interaction with SRs and IVAs has been investigated for the purpose of speaker identification,
addressee detection and dynamic user entrance/leave mechanism [Yumak et al. 2014c]. To
enhance multiparty dialogue management, attention management and addressee recognition
can be enhanced by observing lip movement and gaze to successfully understand the current
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Figure 17.5 Conversational group detection in HRI [Adapted from Swofford et al. 2020]. The agents that
have the same color are estimated to be part of the same group. The opacity of the red lines
connecting the agents represents the likelihood of them belonging to the same group. Left:
a situation in which all five people that interact with the robot are estimated to be part of its
group. Right: an individual interacts with the robot while other people observe the interaction
nearby.

addressee in the dialogue [Richter et al. 2016]. Further, Traum and Morency [2010] apply real-
time visual processing to enhance a dialogue model of multiparty communication between
humans and IVAs. Visual processing focuses on head orientation, nods and shakes to influence
a multilayer dialogue model, including addressee identification, turn-taking, social affiliation
and grounding.

Considering a different aspect of perception, interest has been developed in perceiving
the dominant human in an interaction based on different sensor modalities. Skantze [2017]
showed that analysis of dialogue with focus on the amount of speaking and turn-taking
behaviors could help identify dominance early on in a conversation-based game. Strohkorb
et al. [2015] utilized visual data only to predict the most dominant child in a group interaction.

17.3.3 Generating Behavior in Groups
The synthesis of small group behaviors involves automatic conversation management syn-
chronizing a range of multimodal behaviors including speech, eye-gaze, gestures, and body
positioning across group members in a socially appropriate manner. Locomotion behaviors
support movements of individuals within the group, from small position shifts of group mem-
bers that are natural in real situations, to the larger formation changes required to accommo-
date a newcomer to a group or coalesce when an existing member leaves. Generation also
encompasses approach trajectories and join behaviors for newcomers to a group, an important
ability supporting multiparty interaction with SIAs in both real and virtual environments.

Conversational Behaviors
In conversational group settings, humans use a variety of verbal and non-verbal signals
to regulate, coordinate and otherwise manage their interactions. Figure 17.6 exemplifies
situations in which conversational behaviors are explored.
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Figure 17.6 Multiparty interactions involving (left) full-body conversational behaviors that reflect attitudes
held by SIAs in virtual environments [©2021 Brian Ravenet] and (right) interactions between
humans, SIAs and IVAs to investigate social presence [Pereira et al. 2014].

Eye-gaze (see Ruhland et al. [2015] and Admoni and Scassellati [2017] for reviews) is one
important non-verbal behavior underlying conversation. A pioneering study by Mutlu et al.
[2009] showed the importance of generating human-like gaze and how the appropriate robot’s
gaze can shape conversational roles. Considering groups with more than two people, Vázquez
et al. [2017] showed how attentive robot gaze and body orientation should be generated jointly
and the importance for the feeling of groupness. Further, more frequent short glances have
been found to be more effective than less frequent longer stares for participants to feel the
direction of look [Admoni et al. 2013].

Models for conversational behaviors have also been developed for IVAs. Prada and Paiva
[2005] developed a model that supports the dynamics of a group of synthetic agents, in-
spired by theories of group dynamics developed in human social psychological sciences. Au-
tonomous synthetic characters employing these models had a positive effect on the users’ trust
and identification with the synthetic group. Pejsa et al. [2017] present computational models
of gaze and spatial orientation a virtual agent can use to signal specific footing configurations
i.e. the non-verbal signals that conversational participants use to establish their roles.

Yumak et al. [2014a] investigate interactions between humans, SRs and IVAs in telepres-
ence setups. Users may control IVAs and/or SRs or they may act autonomously, for example,
in the case that their respective avatars i.e. users, leave the interaction. This is accomplished
by means of an architecture that tracks multple users via audio-visual sensors and feeds the
fused data into a dialogue manager that in turn generates virtual human and robot behaviors
[Yumak et al. 2014b].

Ravenet et al. [2015] propose a model for the generation of non-verbal behaviors support-
ing the expression of interpersonal attitudes for turn-taking strategies and group formation
in multiparty conversations among IVAs. Figure 17.6 (left) demonstrates a generated group
interaction from this line of work.
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More recently, de Coninck et al. [2019] employed a data-driven approach to automatically
generate non-verbal behaviors for virtual characters during group interactions. Dynamic
Bayesian Networks have further been used to establish associations between conversational
state and non-verbal behaviors by analyzing the CMU Panoptic dataset [Joo et al. 2017].

In respect to empathy within groups, Alves-Oliveira et al. [2019] explore how the per-
ception of the emotional climate can inform the generation of appropriate empathic behavior
toward the group.

The selection of social actions by a robot in unstructured multiparty encounters was
shown to be more successful and efficient when learned as an action selection policy through
reinforcement learning [Keizer et al. 2013]. When treating these interactions in a task-based
manner, knowledge-level planning has been shown to be promising [Petrick and Foster 2013].

A further line of research explores how an SR can be part of joint action with a group
of humans, e.g. dancing in a group. Anticipatory action planning was necessary to allow a
robot to join a jazz combo [Hoffman and Weinberg 2011]. Iqbal et al. [2016] found that
perceiving high-level human behavior to anticipate human group motion is advantageous
when generating motion for joint actions with humans. The behavior of the robot or multiple
robots when joining a joint action has further influence on the group dynamics specifically if
the two robots generate their motion according to different paradigms [Iqbal and Riek 2017b].

Locomotion Behaviors
Locomotion is a desirable capability for robust situated multiparty interactions in which
artificial systems are expected to be mobile, active conversational participants that adapt to
humans rather than static, passive systems. Social-aware navigation (see [Charalampous et al.
2017] for survey) enables agents to navigate in the environment so that they not only establish
the fastest path to a goal, but also respect other characters as social entities.

Thus far, social-aware methods have been mostly applied to the socially acceptable naviga-
tion of robots. Sisbot et al. [2007] proposed a human-aware robot motion planner to generate
a safe path by considering the human position, gesture and field of view. Gao et al. [2017] and
Pokle et al. [2019] proposed approaches that combined classical planning with modern deep
learning techniques to enable SRs to adapt to dynamic human environments. Satake et al.
[2013] presented a method for a robot to approach people who are walking through the en-
vironment. Other social-aware navigation systems consider static human groups. Truong and
Ngo [2018] proposed a framework to enable an SR to approach a human group safely and
socially. Yi et al. [2015] presented a cost map based on the distance for mobile pedestrians
and static groups. Gómez et al. [2014] extended a fast-marching algorithm to navigate a robot
for engaging a group of people. Social-aware navigation methods have also been applied to
virtual agents. Pedica and Vilhjálmsson [2018] simulated human territoriality while navigat-
ing a virtual character toward small groups. A recent work [Yang and Peters 2019c] proposes
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Figure 17.7 Machine learning models for generating approach behaviors into small groups for SIAs,
including Generative Adversarial Networks-based model (left) [Adapted from Yang and
Peters 2019b] and reinforcement learning-based model (right) [Gao et al. 2019].

a social-aware navigation system capable of moving an agent through an environment that
contains both static and moving virtual groups.

Repiso et al. [2020] used an adaptive side-by-side model so that a robot could au-
tonomously accompany a group of people walking.

Approach Behaviors
Several studies have been carried out that specifically concern the approaching behaviors of
newcomers into small free-standing conversational groups. Examples for these approaches
are given in Figure 17.7. Ramı́rez et al. [2016] adopted inverse reinforcement learning,
involving several participants demonstrating approaching behaviors for a robot to learn.
Samarakoon et al. [2018] designed a method to replicate the natural approaching behaviors of
humans. In a recent work, Gao et al. [2019] proposed a deep reinforcement learning model to
generate robot approaching small group behaviors. Behaviors for approaching groups have
also been studied for IVAs. Jan and Traum [2007] presented an algorithm for simulating
movement of agents, such as an agent joining the conversation. Pedica and Vilhjálmsson
[2012] integrated behavior trees in their reactive method to simulate lifelike social behaviors,
including robot behavior for approaching groups. Both approaching and leaving behaviors for
virtual characters were considered by Yang et al. [2017]. In this work, a finite state machine is
utilized in the transitions between different social behaviors. More recently, Yang and Peters
[2019b] proposed a model based on Generative Adversarial Networks (GAN) to generate safe
and socially acceptable trajectories into free-standing conversational groups. The trajectory
prediction model considers group dynamics, including the changing position and orientation
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Figure 17.8 Full-body motion capture data of approach behaviors (left) [©2020] and the approach
behaviors from real-life datasets (right) [Yang and Peters 2019a].

information of group members as they make position adjustments within a formation, and is
intended for application to both virtual agents and mobile robots.

17.4 Group Datasets
To inform either the perception of group dynamics or generation of appropriate SIA behavior,
datasets capturing different aspects of multiparty interaction have been collected. Relevant
datasets can be divided into human-robot and human-human datasets.

Only a few datasets exist that capture multiparty interactions with at least one robot. The
Vernissage Dataset [Jayagopi et al. 2013] captures interactions of multiple participants with
a wizarded NAO robot. The UE-HRI dataset focuses on spontaneous engagement with a
Pepper robot and contains dyadic and multiparty interactions [Ben-Youssef et al. 2017]. In
addition, MHHRI [Celiktutan et al. 2017], focuses on analyzing personalities and relationships
with engagement of human-human (dyadic) and human-robot interactions (triadic). A recent
dataset CongreG8 [Yang et al. 2020] uses full-body Motion Capture (MOCAP) with a focus
on approach and joining behaviors for free-standing conversational groups, and includes both
human-human data and human-robot data that have been applied to both virtual agent and
robot group scenarios. Examples for approach behaviors covered in CongreG8 and other
datasets are given in Figure 17.8.

Human-human interaction databases in contrast to multiparty human-robot datasets were
extensively reviewed in several surveys including Borges et al. [2013], Stergiou and Poppe
[2018], Zhang et al. [2019]. Unlike datasets containing individual action recordings, human-
human interaction datasets, i.e. those containing multiple humans interacting, are relatively
scarce. The CMU Panoptic dataset [Joo et al. 2017] collects 3D full-body motion of a group
of people in various social interaction scenarios such as dancing and haggling. The BARD
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dataset [Cancela et al. 2014] focuses on recording human behavior analysis in video se-
quences with multiple targets in wild environments. Other datasets involving groups collect
2D location information such as body position and orientation information. The MatchNMin-
gle dataset [Cabrera-Quiros et al. 2018] is a multisensor resource for the analysis of social
interactions and group dynamics. The IDIAP Poster dataset [Hung and Kröse 2011] is a video
dataset with annotations of body position and orientation information, but also the data for F-
formations (conversational groups). Similarly, the Coffee Break dataset [Cristani et al. 2011],
the SALSA1 dataset [Alameda-Pineda et al. 2015], and the Cocktail Party dataset [Ricci et al.
2015] contain F-formation annotations and 2D pose information. The VEIIG dataset [Bandini
et al. 2014] collects annotated data with moving groups in a crowd. The Semisynthetic dataset
[Yang and Peters 2019a] contains trajectories of individual agents approaching groups based
on a social-aware navigation method, and it is used to learn approaching group behaviors.
Further, the Elea dataset consists of multiparty human-human of three and four participant
groups where the recorded data allows the identification of emerging leadership in a survival
task [Sanchez-Cortes et al. 2012]. A large set of meetings captured through multiple modali-
ties are available in the AMI meeting corpus [Kraaij et al. 2005]. A more playful setting was
chosen in the WOLF dataset [Hung and Chittaranjan 2010] where larger groups engage in
the Werewolf game. Audiovisual data of multiparty interaction in three different cultures and
languages was captured and annotated in the UTEP-ICT dataset [Herrera et al. 2010].

17.5 Similarities and Differences in IVAs and SRs
Considering previous research, in this section we identify and discuss a number of aspects
that IVAs and SRs have in common regarding their ability to work in groups. It is important
to note that others have conducted similar analyses before. For example, Gratch et al. [2015]
discussed how research implications on virtual humans can impact human-robot teamwork.
We begin by discussing the similarities:

• Driven by user experiences. Both in the virtual or the physical world, many SIAs are
developed to evoke realistic or interactive user experiences. Given this similar goal, it is
often the case that common metrics are used to evaluate people’s experiences with these
agents. Social presence, for example, has been extensively investigated in both IVA [Hai
et al. 2018] and SR [Pereira et al. 2014] multiparty user studies.

• Application domains. Many SIAs share the same application domains (e.g. entertain-
ment, gaming, therapy, collaboration, etc.), offering opportunities to share computa-
tional models between the two sub-communities. While there are some exceptions to
this (e.g. navigation algorithms in virtual worlds differ significantly from the ones for
real-world environments), many of the perception and high-level decision-making com-
ponents could be implemented in a way that the target agent embodiment is abstracted.

1 https://www.fbk.eu, https://tev.fbk.eu/salsa
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For example, as discussed by Gratch et al. [2015], SIAs natural language dialog systems
could be adapted for SRs and vice-versa.

• Multimodal perception and social behavior generation. While the sensing capabili-
ties and embodiment of IVAs and SRs might differ, all SIAs benefit from multimodal
perception and behavior generation. Multimodal perception is key for making agents
more robust and capable of dealing with the complexity of group interactions. For ex-
ample, perception of multimodal cues has been fundamental for keeping track of turn-
taking patterns and advancing multiparty dialog [Richter et al. 2016, Traum and Morency
2010]. Likewise, multimodal behavior generation is important for providing effective
communicative signals to users. As in human interactions, enabling SIAs to communi-
cate through multiple modalities can facilitate important communicative processes like
grounding [Mehlmann et al. 2016]. But care must be taken when designing multimodal
behaviors. Research has shown that different behavior modalities, like body motion
and gaze, can influence how people perceive each modality during group interactions
[Vázquez et al. 2017].

We continue by discussing the differences:

• Perception. While we perceive the physical environment directly via our visual senses,
there is a significant level of indirection when rendering the virtual scenes in which IVAs
are embedded. Hardware limitations and the choice of virtual camera parameters may
result in different perceptual impressions of virtual representations when compared to
their real counterparts. For example, differences in distance and social space perception
in virtual [Li et al. 2019] and mixed reality [Li et al. 2018] environments may result
in different interpersonal distances being observed between humans and IVAs when
compared to real-world situations. Differences may also exist in how we perceive a host
of other factors, such as the appearance [Peters et al. 2018] and photorealism of the IVAs
(see Embodiment below), which may also impact the degree to which we treat IVAs as
social entities. Especially for multiparty interactions, considering these effects combined
with how humans perceive groups as entities i.e. group entitativity, seems important for
creating perceptually sensitive social models of behavior [Bera et al. 2018] transferable
between the virtual and real worlds.

• Mobility. There are extra considerations for SRs if they are to be mobile to any degree
in their environments. Especially, the priority for SR movement algorithms is that they
should be safe and efficient when operating in the vicinity of humans. Physical multiparty
interactions, which imply numerous humans and SRs interacting in close proximity to
each other, are therefore especially challenging. In contrast, IVAs have direct access to
the state of the virtual environment through a world database and collisions with humans
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are only significant in relation to the visual plausibility of the simulation as they do not
have any physical consequences.

• Embodiment. A core difference between SRs and IVAs is their embodiment: real ver-
sus virtual. The impact of embodiment on social presence in multiparty interactions
[Shamekhi et al. 2018] is especially significant due to how social presence pervades inter-
action, from proxemics to attention behaviors [Goffman 1963]. While favorable effects
of social presence have been attributed to physical embodiments, the role of physical
presence in the process warrants investigation [Li 2015, Thellman et al. 2016]. For IVAs,
the photorealism of the embodiment impacts self-reported impressions of social presence
[Zibrek and McDonnell 2019], although questions remain as to what degree coinciding
behavioral effects, such as those observed in human proxemic behavior, can be achieved
based on photorealism improvements alone.

• Gaze. Perception of mutual gaze displayed by SIA in multiparty interactions is of
specific importance as it is connected to successful turn-taking. When considering IVAs
that are displayed as 2D agents on a screen in a physical environment, Al Moubayed
et al. [2012] argue that the Mona Lisa effect has stronger impact in the interaction with
multiple users. They compared a displayed 2D agent to a 3D back-projected robotic
head and found that the 3D agent was perceived as less confusing in turn-taking. Further
evidence on the importance of physical movement on gaze was found by Vázquez et al.
[2017] where the robot’s body motion could help to convey the gaze behavior. More
recently, a more subtle change in eye gaze display was found influential by Kinoshita
et al. [2017] where convex eyes could direct gaze more accurately and hollow eyes were
correlated with a broader gaze cone.

17.6 Current Challenges and Future Directions
In this section, we discuss some of the current challenges in multiparty interaction between
humans and SIAs, along with future research directions.

• From one-to-one to one-to-many. Most of the previous research on computational
models for perceiving and generating social behavior in SIAs has focused on dyadic
interactions of one agent and one user. However, group interactions tend to be more
complex [Traum 2004], and the number of people around the agent not only affects how
the agent should behave but also how it should perceive its environment. So far, little is
known about how data-driven models perform when tested in a group size different than
the one they were trained on, and most data-driven perceptual systems for human-agent
interaction rely on data collected in the same context where future interactions are likely
to occur. While previous work has shown that a disengagement classification model
trained with group data generalized better to individual participants than the reverse
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[Leite et al. 2015], further research is needed to confirm that the same findings apply
to other types of multiparty perception and decision-making systems.

• Formation changes and situated interactions. Real-world multiparty interactions in-
volve a degree of mobility of participants due to small shifts in the positioning of group
members who are never totally static. Moreover, explicit formation changes, which may
be caused by members joining and leaving the group, or even a change in the attitudes or
the focus of attention of the group, can bring additional challenges. Dynamic position-
ing behavior therefore needs to be considered in conjunction with full-body behaviors
and conversational management since current research typically assumes static SIAs in
multiparty situations. This places a higher priority on understanding the impact of envi-
ronment constraints on human proxemics behaviors, in addition to developing artificial
models capable of better understanding their spatial environments so that they can ac-
count for such changes while also solving challenging locomotion problems.

• Individual and group adaptation. SIAs developed for multiparty interaction need
to find an optimal balance between adapting to an individual or the whole group.
When considering individual adaptation within a group, the behavior of other group
members can still be useful for better responding to the individual. Pioneering work
in this direction by Mou et al. [2019] has shown that group information can be used,
for example, to improve the accuracy of recognizing an individual’s affective state in
the group. However, despite some efforts in this direction, questions such as how to
accommodate for social norms, culture, and individuality of group members [André et al.
2020] remain largely unexplored.

• Dynamic social environments. Laboratory environments are extremely valuable for
controlled human-agent interaction experiments (e.g., for investigating specific system
components in isolation), but the way people behave in laboratory conditions is substan-
tially different from that of the real world. If SIAs are to be placed in complex, con-
strained and/or unstructured social settings, more in-the-wild research is needed in those
settings from the early stages of development. As discussed by Jung and Hinds [2018],
it is particularly important to understand the impact of the robot (or agent) on the so-
cial environment beyond the individual. Multiparty interactions also need to be robust to
individuals joining and leaving them, placing additional importance on modeling social
active vision mechanisms [Breazeal et al. 2001, Peters et al. 2011] so that those within
the group become aware of potential newcomers and are capable of interrupting ongoing
interactions in order to allow them to join in a socially appropriate manner.

• Choice of metrics. To measure the influence of robot behavior on groups, different as-
pects have been found of interest to study. For example, works that consider social as-
pects of group dynamics [Fraune et al. 2017a, Sebo et al. 2020, Short and Mataric 2017,
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Strohkorb Sebo et al. 2018] have used different questionnaires and interviewing tech-
niques to measure inclusion, cohesion, entitativity, or psychological safety. To further
understand different SIA behaviors and their influence in multiparty contexts, new valu-
able insights could be gained by identifying and utilizing standardized metrics for vary-
ing multiparty human subject studies. Abrams and Rosenthal-von der Pütten [2020] take
a first step in this direction by discussing aspects of cohesiveness, entitativity and group
identification and how to measure these aspects. However, further challenges might arise
in specific group contexts, e.g in cases where language is no option, for example, among
young children or children with varying mother tongues. So far, no validated methods ex-
ist that could measure, e.g. the cohesiveness of a group, other than through questionnaires
or interviews. The development of language-free tools could further give insights into
group dynamics in special target groups or generally allow for indirect assessment, which
has been found to give valuable additional insight for other metrics (e.g., trust [Glaeser
et al. 2000]).

• Replicability of results. As discussed by Iqbal and Riek [2017a], the community still
lacks an infrastructure to support replicability that is of specific importance in more
complex environments such as multiparty interactions. Therefore, it is difficult to explore
the effects of different kinds of robots in comparable situations. Recently, Jung et al.
[2020] proposed a task that allows the studying of the effect of resource distribution
pursuit by a robot and that might allow comparing the effects of different robots and
robot behaviors across research groups.

17.7 Summary
In this chapter, we addressed multiparty interactions with SIAs. We provided an overview of
the common methods and approaches from social psychology that can be useful for defining
the scope and understanding of group behaviors. We then reviewed existing works addressing
different aspects of multiparty interactions. Among IVAs, the believability of these agents
and how they act in groups has been discussed. When considering the interaction of SIAs and
humans in groups, their behavior has been shown to affect the group dynamics and attitudes
humans develop about the SIAs. Further, SIA behavior can be used to explicitly influence the
dynamics of a group and their interaction. However, to be able to interact in groups, SIAs
need to be able to firstly perceive the group and its dynamics. To further allow autonomous
interactions, SIAs need to be capable of generating appropriate behavior. We discussed
how the F-formations, the group’s focus of attention, the addressee in a conversation and
interpersonal dominance can be detected. Further, we reviewed the generation of appropriate
gaze behaviors and socially aware motions. To help the perception and generation of group
behaviors, we presented a list of relevant datasets. Similarities like multimodal perception of
groups and their dynamics, high-level decision making and multimodal behavior generation
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offer opportunities for the two communities to find symbioses. There are still many open
research directions in this field. We ended with a discussion of current challenges and future
research directions such as coping with changes in group dynamics, and the applicability of
models and methods from individuals to groups or vice versa.
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E. André, A. Paiva, J. Shah, and S. Šabanovic. 2020. Social agents for teamwork and group interactions
(dagstuhl seminar 19411). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

M. Argyle. 2013. Bodily communication. Routledge.

R. D. Ashmore, K. Deaux, and T. McLaughlin-Volpe. 2004. An organizing framework for collective
identity: articulation and significance of multidimensionality. Psychological bulletin, 130(1): 80.

S. Bandini, A. Gorrini, and G. Vizzari. 2014. Towards an integrated approach to crowd analysis and
crowd synthesis: A case study and first results. Pattern Recognition Letters, 44: 16–29.

A. Ben-Youssef, C. Clavel, S. Essid, M. Bilac, M. Chamoux, and A. Lim. 2017. UE-HRI: a new
dataset for the study of user engagement in spontaneous human-robot interactions. In Proceedings
of the 19th ACM International Conference on Multimodal Interaction - ICMI 2017, volume 2017-
Janua, pp. 464–472. ACM Press, New York, New York, USA. ISBN 9781450355438. http:
//dl.acm.org/citation.cfm?doid=3136755.3136814. DOI: 10.1145/3136755.3136814.

M. Bennewitz, F. Faber, D. Joho, M. Schreiber, and S. Behnke. 2005. Towards a humanoid museum
guide robot that interacts with multiple persons. pp. 418–423.

25



26 BIBLIOGRAPHY

A. Bera, T. Randhavane, E. Kubin, A. Wang, K. Gray, and D. Manocha. 2018. The socially invisible
robot navigation in the social world using robot entitativity. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 4468–4475.

D. Bohus, S. Andrist, and E. Horvitz. 2017. A study in scene shaping: Adjusting f-formations in the
wild. In Proceedings of the 2017 AAAI Fall Symposium: Natural Communication for Human-Robot
Collaboration.

P. V. K. Borges, N. Conci, and A. Cavallaro. 2013. Video-based human behavior understanding: A
survey. IEEE transactions on circuits and systems for video technology, 23(11): 1993–2008.
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B. Endrass, M. Rehm, and E. André. Apr. 2011. Planning small talk behavior with cultural influences
for multiagent systems. Comput. Speech Lang., 25(2): 158–174. ISSN 0885-2308. https://doi.org/
10.1016/j.csl.2010.04.001. DOI: 10.1016/j.csl.2010.04.001.
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