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7 Gesture Generation
Carolyn Saund and Stacy Marsella

Gestures accompany our speech in ways that punctuate, augment, substitute for and even
contradict verbal information. Such co-speech gestures draw listeners’ attention to specific
phrases, indicate our the speaker’s feelings towards a subject, or even convey “off-the-
record” information that is excluded from our spoken words. The study of co-speech gesture
stretches at least as far back as the work of Quintilian in 50 A.D., and draws from the
disciplines of cognitive science, performance arts, politics, and, more recently, computer
science and robotics. Gesture is a critical tool to enrich face-to-face communication, of
which social artificial agents have yet to take full advantage. In this chapter, we discuss the
importance, selection, production, challenges, and future of co-speech gestures for artificial
social intelligent agents.

7.1 The Importance of Gesture in Social Interaction
7.1.1 What are gestures?

Gestures as we discuss them here are the spontaneous movements that accompany speech.
Generally these are limited to hand and arm movements [McNeill 1992] but can occasionally
extend to the head, feet, or other body parts [Kendon 2000]. Our focus here, however is on
hand and arm movements.

Specifically, this chapter focuses on gestures in conversation that usually accompany
utterances, commonly referred to as co-speech gestures. This includes gestures that occur
during speech in conversational or performative settings, such as interviews and monologues,
with or without audiences. These can occur with or without conversational partners as well.
As we describe below, gestures serve a remarkably wide variety of communicative functions
in conversation, including conveying information to observers as well as aiding in speech
production and fluency for the speaker.

Importantly, the classifications provided here are by no means exhaustive. In this section,
in addition to introducing one prevailing taxonomy (7.1.1.1), we discuss weaknesses and
alternative proposals to classifying gestures using these dimensions (7.1.1.2 and 7.1.1.3),
as all as many other factors which determine how researchers tend to group gestures, both
physically and functionally.
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2 Chapter 7 Gesture Generation

7.1.1.1 Classification dimensions
A common method of classifying co-speech gestures is by the five types or dimensions
described below. These correspond not only to differences in the motions used to realize
the gesture, but more meaningfully to differences in the conversational contexts, their roles in
speech production and communicative intentions of the speaker.

Gesture type Co-speech necessary? Viewer necessary?
Emblem No Sometimes

Beat Yes No
Iconic Sometimes No
Deictic Sometimes Sometimes

Metaphoric Yes No

Table 7.1: Table of gesture classical types and co-speech properties.

Emblems are gestures which may essentially be thought of as replacements for spoken
language. A prominent example is the “thumbs up” gesture which is common in several cul-
tures, but often with strikingly different meaning In North American and European cultures,
for example, if somebody asks a question, a “thumbs-up” response unambiguously means
“yes,” with or without verbal affirmation. They carry equivalent meaning to their linguistic
counterpart. Importantly, the interpretation of these gestures are culturally and linguistically
dependent; the “OK” symbol in western cultures is a rude insult in Morocco.

Beat gestures, contrarily, are gestures that do not carry semantic content in their move-
ments, but instead “reveal the speaker’s conception of the narrative’s discourse as a whole”
[McNeill 1992] by emphasizing specific words with small motions, often coinciding with the
prosody of the spoken utterance. The movement of a beat gesture is short and quick, and
often takes place only in the periphery of where the speaker uses other gestures [McNeill
1992], and take generally similar form regardless of content of the co-utterance [Levy and
McNeill 1992]. Beats may also aid in speech fluency by coinciding rhythmically to a spo-
ken co-utterance, providing prosodic cues to word recall and comprehension [Hadar 1989,
Leonard and Cummins 2011].

Iconic gestures are literal representations of real, physical counterparts. For example, if
someone utters “we need a knife to cut the cake,” they may produce a gesture with one flat
palm held horizontally, and the other held vertically in a perpendicular “slicing” motion. In
this instance, the hands are literally acting out the motion of a knife cutting something, with
the hands embodying literal physical objects in the world. Similarly, an iconic gesture may be
a mime of a literal motion. For example, if someone tells a story in which they were “running
down the street,” they may hold their arms to their sides and swing them up and down to
emphasize, exaggerate, or depict their speed.
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Deictic gestures are pointing gestures which direct attention towards a referent in the
environment. If you have an array of items on a table and tell someone to “pick up that one,”
the statement makes no sense without a verbal or gestural counterpart to identify the referent.
Similarly, if somebody asks “which way did they go?” a person may simply point in lieu of
providing a verbal response.

Metaphoric gestures “present an image of an abstract concept” [McNeill 1992]. For
example, one may gesture in a bowl or container shape when describing “all of their ideas.”
Although the abstract notion of an “idea” can never be physically realized, the metaphoric
gesture situates “ideas” in a metaphorical container that can be reliably referenced throughout
the conversation by the speaker and viewers.

7.1.1.2 Multiple classifications
As McNeill [McNeill 2006] has argued, these classifications are not strict types but rather
dimensions which are overlapping and open to interpretation when considering the use of
gestures in interactions. This refers to the notion that a particular gesture, within one particular
context, may be interpreted to have different elements of the axes described above.

The same physical motion of a gesture may result in different interpretations depending on
co-speech context. Consider the “slicing” motion described above. When applied to physical
objects (“a knife to cut the cake”), this would be characterized as an iconic gesture. However,
consider the same gesture if it accompanies the phrase “we need coordination to cut to the
heart of the issue.” In this instance, the cutting is metaphorical, as “issues” are not physical
beings with literal “hearts.” Similarly, “coordination” is not a physical object like a knife that
can cut. However, the metaphor of “cutting to the heart of an issue” is grounded in physical
space insofar as cut is a verb which describes a physical action. In the metaphoric condition,
“coordination” may be represented metaphorically as a knife by the fingers falling into stiff,
parallel lines. In this case the fingers may further be thought of as representing people falling
into line. This motion thus illustrates two distinct utterances in which the same gesture occurs,
one where the gesture is referring to actually cutting a physical object and one where the
gesture is used metaphorically.

The use of a metaphor in speech is not necessary for the metaphor to be conveyed in
the accompanying gestures. Figure 7.1a illustrates a metaphoric gesture accompanying the
dialog “we can talk about anything at all”. There is no metaphor used in the dialog while
the gesture is based in metaphors whereby abstract things, such as topics of conversation,
can be represented as physical objects and a set of these objects can be held in a physical
container that is being depicted by the gesture. Despite this degree of independence between
the metaphor use in spoken language and accompanying gestures, the catalogue of metaphors
used in speech provide a useful resource for researchers. Grady [Grady 1997] provides many
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(a) The beginning of the movement
as she says “Anything at all.”

(b) The second part of this gesture,
creating the space where “anything”
may metaphorically be.

Figure 7.1: The motion of the metaphoric gesture accompanying the phrase “Anything at all.”

such metaphors, for which gesture researchers commonly observe gestural counterparts 1.
These include similarity is proximity (e.g. “these fabrics aren’t quite the same but they’re
close”), change is motion (e.g. “things have shifted since you were last here.”), and moments in
time are objects on a path (e.g. “Summer always passes too quickly”). These and many other
metaphors often coincide with physical representations of these metaphoric actions [Lakoff
and Johnson 2008] represented gesturally.

The above are examples of how gestures may be used to emphasize or induce metaphors.
Conversely, consider the straightforward presentation of two options “this or that,” with the
hands held flat, palm-up in front of the speaker. The speaker may say “this option,” and
beat with one hand, and then repeat the phrase “or this option,” but move the other hand,
clearly indicating that they are providing context for the different options. The indication
is made by a beat motion, but also is a clarification of “which option,” giving it attributes
of a deictic gesture, referred to as an abstract deictic [McNeill et al. 1993]. Additionally, the
laying out of two different ideas in space is metaphoric as it relies on the metaphors of abstract
concepts being physical objects and dissimilar concepts are far apart (Grady’s [Grady 1997]
categories/sets are bounded spatial regions), thus incorporating yet another element of the
dimensions described above into a single gestural motion.

7.1.1.3 Alternative classiciation schemes
In some modern works, gestures are often given multiple classifications, or the classification
of gestures is skipped altogether, and gestures are judged solely by their communicative role
or perceived intention. For example, Murphy [Murphy 2003] proposes analysing gestures not
by abstract representation, but instead by the production of those representations themselves.

1 Grady does not propose or consider a framework for gesture analysis in this work cited. Instead, this work considers
in depth the many ways in which metaphors permeate our speech, but does not explicitly discuss how we may use
bodies to act out these metaphors as we say them.
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That is, gestures can be analysed exclusively by their body movements as opposed to attempt-
ing to interpret what those movements represent. He argues movement-based analysis is less
prone to researcher bias and less likely to leave out body movements which do not fall neatly
into the dimensions described above.

This is contrary to the idea proposed by Novack and Goldin-Meadow [Novack and Goldin-
Meadow 2017]. They suggest that iconic and deictic gestures are not simulations of actions
they intend to portray, but instead consciously representational of abstract versions of those
actions. This allows researchers to organize gestures according to their functional role in
conversation. By focusing on gesture’s function as opposed to its specific form, researchers
can begin to focus on why a particular gesture occurs rather than how the intention maps to
movement.

Still more schemes which suggest classifying gestures using both principles of form and
function also attempt to address this problem. Saund et al. [Saund et al. 2019] discusses the
possibility of delineating and classifying gestures according to both conversational context
(the function of the gesture) in tandem with novel physical spaces they occupy (physical
form of the gesture). Additionally, because of these overlapping dimensions, the process of
describing and classifying the motion of gestures themselves is often decoupled from the
meaning the gesture carries [Kipp et al. 2007]. This allows other schemes to break down
gesture classification into linguistic and motion sub-problems [Cassell 1998]. It is only by
considering the full picture of gesture production, from intention, to function, to physical
action, that we can begin to create socially compelling gesture in artificial agents.

7.1.2 Timing
These axes of gesture vary as well by the timing of their performance with a co-occurring
utterance, ranging from nearly coinciding temporally with speech, to gestural performances
many seconds in advance [Calbris 1995, Gibbs Jr 2008, Nobe 2000]. However, perception of
appropriateness for different gestures with respect to co-speech timing is not fixed [Leonard
and Cummins 2011].

The window of time for gestures to be relevant to corresponding speech is similarly fluid,
depending on context [Leonard and Cummins 2011]. Often, gestures anticipate the speech to
which they correspond [McNeill 1985, Nobe 2000], indicating that cognitively, the meaning
we attempt to convey is formulated and performed by the body before we are able to form
(or at least utter) words for intended communication [Kendon 2000]. This similarly implies
that the cognitive processes between communication intention and speech formulation are the
same processes which initiate gesture production [Kendon 2000].

While the development of social artificial agents have a ways to go before these artifacts
can form rich coherent conversational speech from a communication intention alone, it is im-
portant to keep in mind that such a pipeline that truly possesses the spontaneity, creativity, and
expressive substance of human gestures must similarly be responsible for producing meaning-
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ful co-speech gestures. We discuss current implementations of various gesture generators in
relation to speech in 7.2.

7.1.2.1 Gestural Phases and Units
At the level of individual gestures, there is a complex feature structure. There are the phases of
gestural motion including the rest, preparation, stroke, holding and relax phases, as well as the
forms of motion, their locations, and changing hand shapes. However, people often gesture in
an overall fluid performance involving gesture sequences (a.k.a. gesture units [Kendon 2004])
in such a way that not all phases may be present in every individual gesture. In sequences, co-
articulations between gestures may eliminate the rest or relaxation phase of a gesture [McNeill
1992].

One such name to refer to a sequence of related ideas that can span multiple gestures is an
ideational unit [Calbris 1990]. Calbris argues that ideational units structure the discourse and
the kinesic segmentation of gestures, and serve to impose requirements on gestural features
both within and across ideational units in an overall performance.

Within a gesture performance, some features such as hand shape, movement trajectory, or
location in space, may be coupled across gestures while other features serve at times a key
role in distinguishing individual gestures from one another. This happens both physically and
at the level of their meaning. For example, the hands may go into a rest position between
gestures to indicate the end of an idea, a change of hand shape can serve to indicate the start
of a new idea in the discourse [Calbris 2011] or one gesture’s location may serve to refer to a
preceding gesture in an overall gestural scene where, for example, locations in gestural space
take on specific meanings that may be referred to by subsequent gestures.

7.1.3 Cultural Relevance
Another critical aspect to bear in mind when discussing gestures, especially in the context of
artificial agents, is that nearly every aspect of gesturing is culturally dependent [Efron 1941].
Hand shapes [Calbris 2011], gesture size and frequency [Kita 2009], emblematic meaning
[Calbris 1990], and timing [Kita 2009, Talmy 1985] are a few examples of components of
gesture which rely heavily on the native and contextual culture of the speaker. Some cultures
use hardly any beat gestures, whereas some use them to punctuate almost every sentence
[Levinson 1996]. As previously mentioned, emblems which are positive signals in one culture
may be rude insults in another [Calbris 2011].

But beyond this, different cultures’ concepts of physical space and indeed time inform
their gestures as well [DiMaggio 1997]. In North American cultures, when talking about time
individuals often gesture along a plane running horizontal to the speaker, with the left in
the past and the right in the future. However, in French culture, time is often gestured as a
plane running parallel to the speaker, as if the speaker is walking along the line of time with
the future positioned in front and the past behind the back of the head [Calbris 2011]. But,



7.1 The Importance of Gesture in Social Interaction 7

in other cultures, the future may be referenced behind the speaker, with the past in front of
the speakers eyes [Núñez and Sweetser 2006]. Contrast this yet again to Chinese culture, in
which the vertical axis commonly applies in conceptualizing time where earlier times are
viewed as “up” and later times as “down” [Radden 2003]. These different gestures show not
only that cultural sensitivity must be taken into account for artificial agents when interpreting
and performing gestures, but that the underlying conceptual representation of time may differ
between cultures as well. A further review may be found in [Kendon 1997]. For an overview
of the implementation of culture in SIAs, please refer to Chapter 13 of this handbook.

7.1.4 Gesture’s role in conversation
The influence of gesture permeates social interaction. While we predominantly discuss ges-
ture’s role in human-human interaction, it is crucial to note that virtual agents elicit responses
consistent to humans in many social contexts [Krämer et al. 2013, McCall et al. 2009, Poggi
and Vincze 2008, Takeuchi and Naito 1995]

7.1.4.1 Dialog regulation
Gestures can help regulate conversation, for example by signaling the desire to hold onto,
acquire or hand over the dialog turn [Bavelas 1994]. Bergmann et al. [Bergmann et al. 2011]
explore a non-exhaustive list of the multitudinous ways regulates dialog, which can be broadly
broken into content-specific and content-agnostic behaviors. Content-specific gestures relate
to the specific content being discussed, and includes clarification requests, establishing a
confidence level in the content of conversation, assessments of relevance, and indications
and connections of topical information within the conversation. Content-agnostic behavior,
however, has to do with the social rules of the conversation. Content-agnostic gestures may
include next-speaker selection, or handling of anti-social or non-canonical discourse behavior,
such as interrupting.

7.1.4.2 Observer’s internal beliefs
The gestures that accompany face-to-face spoken interaction convey a wide variety of infor-
mation and stand in different relations to the verbal content. For the observer, gestures serve a
wide variety of communication functions, such as commenting, requesting, protesting, direct-
ing attention, showing, and rejecting. [Jokinen et al. 2008]. In realizing these communicative
functions, a gesture can provide information that embellishes, substitutes for, contradicts or
is even independent of the information provided verbally (e.g., [Ekman and Friesen 1969b,
Kendon 2000]).

As discussed above, gestures of course are physical actions but these actions can convey
both physical and abstract concepts. A sideways flip of the hand suggests discarding an object
but can also be used to represent the rejection of an idea [Calbris 2011]. Gestures serve
a variety of rhetorical functions. Comparison and contrasts between abstract ideas can be
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emphasized by abstract deictic (pointing) gestures that point at the opposing ideas as if they
each had a distinct physical locus in space [McNeill 1992]. A downward stroke of a gesture
is often used to emphasize the significance of a word or phrase in the speech or enumerate
points.

Gestures are also used to reinforce and clarify their co-speech utterances. Jamalian & Tver-
sky [Jamalian and Tversky 2012] show that different gestures in co-ordination with the same
temporally ambiguous utterance (“the meeting was moved forward two days”) successfully
disambiguate temporal uncertainty. Similarly, gestures are able to allow observers to interpret
statements as questions using the same audio [Kelly et al. 1999], and to disambiguate linguis-
tic homonyms [Holler and Beattie 2003]. It is precisely because gestures are used to clarify
speech so often that some researchers suggest that gesture is the first tool humans use to dis-
ambiguate basic ideas and requests [Özçalışkan and Goldin-Meadow 2005]. Further evidence
suggests increased gesturing in this manner can lead to positive learning outcomes in teaching
scenarios [Goldin-Meadow and Alibali 2013].

Yet the impact of gesture is not always so explicit. For example, gestures are known to
influence thought in the viewer. In the same publication, Jamalian & Tversky [Jamalian and
Tversky 2012] showed that using different types of metaphoric gestures changes the way that
individuals qualitatively describe certain systems and processes. Gestures can also present
information about the speaker’s state and views towards the subject of conversation. Pollick
[Pollick et al. 2001] shows that viewers are able to read affect from arm motions alone,
potentially giving the viewer valuable interpretable information about the gesturer’s internal
mental state.

Similarly, gestures have also been shown to influence memory recall in cases of eye-
witness testimony [Gurney et al. 2013], opening up discussion of gestures providing leading
answers in a similar off-the-record manner.

Seeing gestures used appropriately also bolster’s viewers’ impression of the speaker.
Speakers who gesture in conversation are perceived as more composed, effective, persuasive,
and competent than those who do not [Maricchiolo et al. 2009].

7.1.4.3 Revealing the Speaker’s mental states and traits
Gesture plays a critical role in human interaction, where it is not simply an addition to speech.
Rather, it is an independent expression of thought that reveals underlying beliefs, intentions
and processes of the speaker [Cienki and Koenig 1998].

A wide range of mental states and character traits can be conveyed gesturally. Placing hands
on hips can display dominance or displeasure, gestures performed with rapid acceleration can
convey arousal or displeasure, a gesture with palm facing outward as if suggesting stop can
convey displeasure at what a conversational partner is saying or doing.

Self-touching gestures or self-adaptors [Ekman and Friesen 1969b], such as rubbing a
forearm, are also believed to convey information about a person’s mental state while also
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providing self-comfort. In particular, these behaviors can reveal negatively valenced emotional
states such as anxiety, fear or guilt [Ekman and Friesen 1969a].

Gestures may further be used to implicitly convey off-the-record information [Wolff 2015].
For example, a speaker may describe two people “getting together” with a co-speech gesture
of either gently intertwining hands, or two fists clashing against one another. While the former
may suggest harmony between individuals, forcing hands together at high velocity multiple
times implies conflict and aggression [Morris 2015] (we discuss the ways in which the form
of gesture carries meaning in section 7.2.1). However, the speaker may specifically choose to
convey this information outside of the speech channel. In doing so, the speaker both relays
information in a fashion that is off-the-record, but still provides context of that information
for the viewers.

7.1.4.4 Speaker impact
While gesture is an invaluable tool for communication, it also acts as an aid for the speaker.
Gestures occur regardless of whether a listener can actively view them. Individuals gesture
at near the same rate when speaking to someone on the phone or in person [Iverson and
Goldin-Meadow 1998]. Similarly, individuals gesture when they know that the viewer is blind
[Iverson and Goldin-Meadow 1997, 1998]. Even congenitally blind individuals gesture at both
sighted and other blind individuals [Iverson and Goldin-Meadow 2001]. This suggests that
gesture plays an important role not only in social communication, but to aid in the speaker’s
own process of conveying information. One hypothesis for this is that using gesture helps
lighten the cognitive load on the speaker [Goldin-Meadow et al. 2001].

While it is impossible to know the full extent of interaction between gesture and speech
without understanding the underlying mechanism of going from thought to communication,
we can observe ways in which communication is explicitly aided by gesture, or rather,
hindered without gesture. Speakers speak less fluently when they lose the ability to gesture
[Lickiss and Wellens 1978]. They also have more trouble recalling words when their hands
are bound and they are unable to gesticulate during speech [Rauscher et al. 1996]. This
phenomenon points to deep relationships between physical body movements and cognition,
discussed in the next section.

7.2 Models and Approaches
While the importance of gesture in both the viewer and the speaker is clear, so too is
the extent to which gesture is a complex, nuanced, and difficult task to perform. Broadly,
this difficulty can be broken down into two tasks: selection and execution. This is not to
downplay all the difficulty in collecting upstream knowledge on which to base selection, such
as modeling or inferring intentions, leakage, dialog regulation, and predicting the effects of
gesture performance. These phenomena represent substantial challenges in their own right,
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and have fields of research dedicated to them. For purposes of gesture generation, we will
focus on approaches for these two sub-problems.

However, before we go further into how gestures may be generated and acted by socially
intelligent agents, we must elaborate on how gestures carry meaning in the first place, in
order to discuss how the components of gesture may be manipulated based on communicative
intent.

In this section, we focus on broad approaches and their similarities and differences. While
we provide contemporary examples of these various architectures, we do not deal with
implementations of computational models or gesture generation mechanisms. For a more
extensive look at the implementation of such architectures, please refer to Chapter 16 of this
handbook.

7.2.1 How gestures carry meaning
As we saw earlier, gestures play a variety of functions in face-to-face interaction and further
there may be multiple such functions that are relevant during a specific utterance. However,
there is a limit to the complexity of information they can reliably convey [Saund et al. 2019].
In this section, we discuss the traits of gesture which have been shown to carry meaning to
viewers.

There are many individual components of a gesture which may be responsible for viewer
interpretation, and the information and capacity of each component varies by individual, and
by culture. Broadly, when discussing co-speech gestures, we refer to the shape and trajectory
of the hands, and all of the parameters which guide those components. Non-exhaustively, this
includes velocity and amplitude of arm motions, orientation of the speaker towards the subject,
the direction and symmetry of the hands, and the timing of hand shape changes relative to
conversational context.

These components and more are discussed at length by Calbris [Calbris 2011], in which
she discusses how parameters of these components (such as the plane of trajectory of the
hands, or orientation of the hand relative to the arm) may augment or vary the communicative
function of a gesture. Specifically, she uses gestural components specified in [Zao in Calbris
et al. 1986]: Movement, localization, body part, orientation, and configuration. Together, these
components can be used as a framework to describe and analyze the shape and communicative
function of conversational gestures. It is not only the components themselves, but moreover
the dynamics (e.g. amplitude, speed and fluidity of movement) of these components are
integral in conveying these functions [Castellano et al. 2007]. Calbris also explores how
varying parameters of a gesture may result in multiple gestural representations of a single
idea, and how, because of the parameter space of gestures, one idea may be presented by
many different conceivable gestures.
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7.2.2 Challenges of gesture generation
The two challenges of selection and execution come with two important constraints which
plague all aspects of intelligent social agent research: processing time and realization (ani-
mation or hardware) constraints. An acceptable pause between utterances is anywhere from
100–300 ms [Reidsma et al. 2011], during which time an agent must gather or infer the rele-
vant context, select a gesture given that context, plan, and perform the gesture in coordination
with speech in order to appear natural. Similarly, choosing the contextually perfect gesture is
useless if it cannot be performed on the required hardware. If choosing the optimal gesture
would take 5 seconds, but a close-enough gesture only 0.05, that must be accounted for in the
selection process.

In addition to these theoretical challenges, researchers also face the practical issue of
how best to transcribe communicative functions using a common interface across different
selection and execution implementations. The dominant framework for this is the SAIBA
framework [Kopp et al. 2006] with stages that represent intent planning, behavior planning
and behavior realization. SAIBA interfaces with two markup languages, Functional Markup
Language (FML) and Behavior Markup Language (BML), to move between these stages.
By beginning with intention of the agent, one can then derive the signals to produce. This
decouples intention from implementations for different gesture generation mechanisms so
they may be applied to different social agents, and forces architectures to drive gesture
generation by intention and communicative function. Notably, this framework was explicitly
developed with the goal of interdisciplinary collaboration in mind.

In reality, the major challenges of what motions to perform, how to communicate those
motions, how to finally perform them must be considered in tandem throughout the gesture
selection and performance process. Below, we dive deeper into the considerations of the
process going from communicative intent to gesture performance.

7.2.2.1 Selection
Selecting a gesture comes with a range of considerations. Some driving factors may be the
communicative intent of the speaker, from the motivation and sub-goal of a particular utter-
ance, to any driving goals of the interaction. An agent must then incorporate relevant social
context, such as the social status of the user, or the user’s attentiveness to the conversation.
This leads to considering the location of the conversation, both generally and to be aware of
elements that may be constantly updating, such as people walking by. These factors drive the
process of determining how to actually gesture, both with and without speech.

Selection must primarily be guided by the conversational goals of an agent. While gestures
can be used to build rapport between agents and users [Wilson et al. 2017], this function may
be considered unnecessary or even detrimental to an agents whose primary function is to direct
or inform users efficiently. It is important that these dialog goals guide gesture selection, as
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random gesturing is not only confusing for the viewer and unnatural-looking [Lhommet and
Marsella 2014], but can also lead to critical misunderstandings [Gurney et al. 2013].

As previously discussed, one role that gesture plays in human speech is to convey both
explicit and implicit information to conversational partners in a contextually appropriate
manner. Depending on the intended communicative function of the gesture, this context
can be considered with great depth. One of the fundamental social skills for humans is the
attribution of beliefs, goals, and desires to other people, otherwise known as Theory of Mind
[Whiten and Byrne 1988]. In other words, an agents’ concern with respect to gesture is not
only “what does my gesture mean?” but “what does my gesture mean to them?” [Scassellati
2002] provides an overview of how these challenges might be addressed in artificial agents,
including implementations to find ways which can be used to predict internal state, and
consequently, potential user responses. For an overview of theory of mind for SIAs, please
refer to Chapter 9 of this handbook.

Moreover, what may still be more relevant to an agent’s gestures is it’s own internal
emotional state. Gesture can also be used to portray emotion in a way that is detectable
by viewers [Kipp and Martin 2009, Pollick et al. 2001]. There is a considerable literature
dedicated to computational models of emotion, with a summary found in [Marsella et al.
2010]. The breadth of this field in the context of gesture research suggests that an agent’s own
internal state may play a modulating role in gesture generation, with respect to both the type
of gesture selected, as well as the way that gesture is performed. Research suggests agents
with understandable and consistent mental states and which act predictably are preferable for
users [Mubin and Bartneck 2015], making gesture a key potential avenue to facilitate positive
social interaction.

Yet another consideration is when is a gesture performance appropriate by an agent. If
given speech to perform, acoustic features such as emphasis and prosody can be key indicators
of when a gesture performance may enhance communication (or hinder it) [Krahmer and
Swerts 2007]. Similarly, semantic information in speech may give clues as to when to gesture,
or give parameter values to modulate gestures. For instance, it may be advantages to refrain
from gesturing, or use very low amplitude gestures, when discussing sensitive topics.

7.2.2.2 Execution
Equally important to the context and content an agent may access and express is the structure
of potential gestures the agent can perform. Given the space of possible human gestures (e.g.
the infinite planes on which hands can project and angles at which wrists can move, 7.2.1),
they can be extremely challenging or impossible to replicate exactly, especially in physical
robots with limited degrees of freedom compared to people or non-humanoid forms.

One area of concern in terms of the execution of a gesture is temporally aligning motion
appropriately with co-speech utterances. Gestures seem to differ in terms of perceivers’
sensitivity to their alignment with speech [Bergmann and Kopp 2012]. Depending on agent
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implementation, coordination with other relevant body parts, such as the eyes, legs, and
mouth, may present challenges for both dynamic animation and robotic movement. While
virtual agents may have limited body points that can be controlled, a wide variety of tools
from 3D modeling and animation tools [Autodesk, INC.] to character animation engines
[Niewiadomski et al. 2009, USC Institute for Creative Technologies] exist to both hand
animate, use motion capture, or procedurally generate gestures on virtual agents.

As discussed in 7.1.2.1, another challenge in gesture animation concerns the complex
structure of gestures and the role of that structure in the performance of sequences of gestures
(namely the phases described in 7.1.2.1). This includes the challenge of how to integrate
individual gestures’ features into fluid performances. To do so, virtual agent researchers have
taken into account that human gesturing has a hierarchical structure that serves important
demarcative, referential and expressive purposes [Xu et al. 2014]. Xu et al. [Xu et al. 2014]
layouts an approach that uses this higher level of organization to realize gesture performances.
Their approach determines when and which features are common versus which ones must be
distinguishable and addresses issues concerning the physical coordination or co-articulation
between gestures within gesture units, including determining whether individual gestures go
into phases of relax, rests or holds. The work of Xu et al. drew on Calbris’ [Calbris 2011]
concept of an ideational unit.

Another challenge concerns the manipulation of the expressivity of gestures. For example,
consider a gentle beat gesture that might convey a calm speaker emphasizing a point versus a
strong beat gesture with larger, more accelerated motion that conveys a more agitated speaker
strongly emphasizing a point. One approach to realizing such variation is to handcraft a suite
of beat gestures. The technique of parameterized blending of animations, however, supports
smooth variation between those extremes by controlling the amount of each gesture that is
used in the blend so that the resulting gesture could vary the degree to which it emphasizes a
point or conveys agitation. Blending presents challenges specifically to animators and graphic
designers responsible for the presentation of gestures on virtual agents. A variety of motion
blending techniques used specifically in the context of gesture generation are discussed in
[Feng et al. 2012].

Robots offer their own set of challenges. Often, robots have far fewer degrees of freedom
than humans and virtual agents, with hard constraints on the extent and speed of motion.
They are very different and severely limited compared to graphics based humanoid models.
Specifically, robots suffer from physical limitations of their own hardware, with body parts
being too heavy to move quickly without hurting themselves or others around them. Or, in
order to alleviate danger to themselves or others, they may have a severely limited range of
motion they can use to express gestures. These challenges are discussed further in section 7.3.
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7.2.2.3 Gesture catalogues vs. dynamic generation
Broadly, we can characterize approaches to gesture generation as either using a set catalogue
of gestures, or a set of parameters which drives dynamic generation of gestures on-the-fly.
Here we provide an overview of these approaches, while below we will instantiate them with
existing implementations.

Virtual agent designers and social roboticists often take the approach of using a fixed
library of gestures. This is beneficial both because the agent designer may create gestures
specific to the use case of the agent, either by having an animator create gestures using
animation software or use motion capture of an actor. Another benefit is that by having
pre-computed animations, the agent does not have to do extra work to actually compute the
animation, but instead can act instantaneously in a motion that is guaranteed to satisfy the
requirements of its software and hardware. However, while looking smooth and executing
quickly are huge considerations in social agent research, this approach suffers from a lack
of diversity in movements. By selecting only from a library of pre-animated gestures, agents
risk looking particularly “artificial” by re-using gestures, by lacking a gesture for a particular
social situation or by being unable to vary expressivity. To address such limitations, research
has explored parameterized gesture generation techniques as mentioned above that blend
animations dynamically, providing a continuous range of variability between a mild beat
gesture to a strong beat or small frame gesture or a large frame. This can also be done across
multiple dimensions so that for example a beat may be varied both in intensity and direction.

Alternatively, an option of greater complexity is to allow agents to generate gestures
entirely from a more complete parameterization of the motion such the hand shapes, the
path the wrist takes, etc. This can be manifested in two ways: by generating gestures on-
the-fly, or finding gestures from a library that satisfy any specified parameters. The first
approach must contain a model of how particular elements of the communicative context
relate to gestural parameters, where the context might include, for example, whether the agent
is trying to convey confusion, how agitated should the agent look and what hand shape and
motion was used in the previous gesture. The alternative one might use is to simply have
a table lookup approach, where the context select a set of pre-specified parameter values.
For example, [Poggi et al. 2005] uses context to derive hand-crafted parameters (such as
amplitude, openness, etc.) which then select from a library of pre-created gestures. The use of
pre-animated motions saves the calculation of motion planning during execution, while also
supporting manipulation of the dynamics of those motions during execution to provide a level
of novelty for the viewer.

Importantly, the resulting gesture from any method may still be adjusted through parameter
manipulation. Gestures may be sped up, mirrored to adjust direction, or blended to create
amplitudinal “mild” or “extreme” versions of a gesture, all at run time.
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7.2.3 Broad approaches in current implementations
We have discussed the ways in which gestures carry meaning and the challenges facing re-
searchers who implement generative models of gesture. Now, we present implementations
which attempt to overcome these challenges to create compelling gestures in socially intelli-
gent agents.

Approaches to co-speech gesture generation can be characterized as existing on a con-
tinuum: rule-based vs. end-to-end machine learning techniques. One issue common to any
approach, however, is that of going from mental states to gestural performance. As we noted,
human gesturing is influenced by a wide variety on mental states, including communicative
intentions within and across utterances, leakage or regulation of affective and cognitive states,
traits and dialog management. The richness of human gesturing arises from this variety of
mental state inputs.

However, the social agent field currently lacks a cognitive architecture of sufficient com-
plexity to model such a variety of mental states, and has broadly moved away from holis-
tic, all-encompassing behavioral architectures (with notable exceptions [Kopp et al. 2014,
Swartout et al. 2006]). Consequently, the proxy input in gesture models is often reduced to
the text and/or audio of the utterance which the agent is meant to perform, sometimes along
with a limited communicative intent, for these elements are available to agents. This can limit
an agent’s gesture performance to what is available in these inputs. In other words, if the agent
is not modeling emotion, social attitudes like skepticism, or what it wants to say on versus off
the record, than its gestures cannot reflect this information. This is even true in the case of
systems that use recorded voice, where potentially some of this information may be inferred
from the audio, since the agent or agent designer must still be modeling to such information
when selecting or recording the voice, respectively.

7.2.3.1 Rule-based models
One of the earliest, if not earliest, generators is the Behavior Expression Animation Toolkit
(BEAT) [Cassell et al. 2004], which works by analyzing the relation between surface text
and gestures. Text is parsed to attain information such as clauses, themes/rhemes, objects,
and actions occurring in the discourse. This information is then used in conjunction with a
knowledge base containing additional information about the world in which the discourse is
taking place in order to map them onto a set of gestures.

Non-Verbal Behavior Generator (NVBG) [Chiu and Marsella 2011] extends the BEAT
framework by making a clearer distinction between the communicative intent embedded in the
surface text (e.g. affirmation, intensification, negation, etc.) and the realization of the gestures.
This design allows NVBG to generate gestures that are rhetorically relevant even without a
well-defined knowledge base.

Another approach which utilizes real-world utterance analysis is by [Stone et al. 2004].
They proposed a framework to extract utterances and gesture motions from recorded human
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(a) Cerebella Architecture
(b) GRETA Architecture

Figure 7.2: The architectures of two generative gesture models.

data then generate animations by synthesizing these utterances and motion segments. This
framework includes an authoring mechanism to segment utterances and gesture motions then
a selection mechanism to compose utterances and gestures. Similar to this, [Neff et al. 2008]
created a comprehensive list of mappings between gestures types and related semantic tags
to derive transmission probabilities of motion from sample data. This framework captures the
details of human motion and preserves individual gesture style, which can then be generalized
to generate gestures with varying forms of input.

This leads to a still more sophisticated method of generation, which is to combine this
language-based method with making inferences from dialog about the mental state of the
agent to determine which gesture to use. Notably, this approach may be effective without
mapping to exact gestures. The outcome from different rules may, instead of prescribing an
exact gesture, determine specific elements which should be present in a gesture (as seen in
[Poggi et al. 2005]). Additionally, various contextual information, such as speech prosody
or detected listener attention, can determine other elements of gestural performance such as
speed (or co-speech timing) and amplitude.

This approach has been shown to be effective through multiple prominent examples in
virtual agents. Using a combination of acoustic and linguistic elements, Cerebella [Lhommet
and Marsella 2013, Marsella et al. 2013] is a system currently in use in both virtual agent
and social robotics applications. which dynamically generates gestures which appropriately
correspond to speech both auditorily and semantically.

Greta [Poggi et al. 2005] is another example, which typifies how high-level concepts can
be used through external context to drive the motion of gestures of an agent. The architecture
for these two systems, which provide excellent comparative examples of gesture generating
architecture, are shown in Figure 7.2a and 7.2b.
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7.2.3.2 Data-driven techniques
On the other end of the spectrum is completely text-agnostic end-to-end gesture production
using deep learning. These models use large amounts of audio and video harvested from
online sources like YouTube, and use video parsing tools such as OpenPose [Cao et al. 2019]
to extract motion data to correlate audio to speaker movements. Using varying combinations
of adversarial networks and regression, models are able to produce extremely natural gestures
over a wide variety of speech-audio inputs [Ferstl et al. 2020]. This approach undeniably leads
to impressively natural results, particularly in the context of generating gestures based on an
individual speaker [Ginosar et al. 2019].

However, this approach lacks the sophistication of including multiple informative aspects
of gesturing. By using audio input, these models are largely based exclusively on vocal cues
like pitch and prosody. As a result, they fail to learn mappings between motion and semantic
and rhetorical structure, and produce gestures that, while more natural, are less nuanced and
complex than those we see in human performance. While it has been argued that the middle
layers of these networks can derive some of these aspects [Takeuchi et al. 2017] evaluations
of gesture meaningfulness or semantic relatedness to co-utterances have not been done with
end-to-end machine learning models based on audio.

Recently, end-to-end models have also been developed without audio, exclusively using
co-utterance text of gestures [Yoon et al. 2019]. These have resulted in gestures which are
judged as related to co-utterance, as well as life-like and likeable. This work paves the way
for promising avenues in the future of gesture generation, harnessing the power of both end-
to-end machine learning models with speech qualities derived from both audio and textual
cues.

The possibility of hybrid systems can offer the best of both worlds in terms of flexibil-
ity, novelty, and performance. From the examples above, it is easy to see how these two ap-
proaches exist on a continuum. In the rule-based example, to recognize that a particular phrase
has a negative intent necessarily requires some aspect of machine learning, as there is a robust
body of literature on detecting affect in both written language [Hutto and Gilbert 2014, Pen-
nebaker et al. 2001] and speech [Eyben et al. 2009, Schuller et al. 2011]. Similarly, we can
detect transcripts from audio input and parse these using rhetorical and semantic cues through
text parsers (e.g. [Charniak 2000, Joty et al. 2015, Pedersen et al. 2004]), many of which are
used in the models above. These can be correlated with gestures and may add crucial elements
extra-auditory to deep learning models.

The Cerebella system realizes such a hybrid technique. It leverages information about the
character’s mental state and communicative intent to generate nonverbal behavior, when that
information is modeled by the agent [Lhommet et al. 2015, Marsella et al. 2013]. In addi-
tion, it relies on machine learning methods to also derive syntactic structure from the text and
prosodic information from the spoken utterance. These sources of information are fed into a
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rule-based system and lexical database that perform additional lexical, pragmatic, metaphoric
and rhetorical analyses of the agent’s utterance text and audio to infer communicative func-
tions that will drive the agent’s nonverbal behavior.

7.2.4 Gesture collection and analysis
To study and understand naturally occurring gestures, researchers use a variety of techniques,
tools, and analyses.

Like many fields of behavioral psychology, researchers have used natural observation
since the 70s and 80s. In the lab, however, classical techniques include solving spatial
reasoning problems and game play [Alibali and GoldinMeadow 1993], narrating videos
[Kita and Özyürek 2003], or telling written stories to conversational partners [Jacobs and
Garnham 2007]. Recently researchers have begun using more subjective techniques such
as conversational scenarios [Ennis et al. 2010] and questions, explicitly designed to elicit
a variety of metaphoric gestures [Chu et al. 2014]. Some researchers have also used trained
actors, either to perform their interpretation of an expression of an emotion, or to speak freely
in a story-like, monologue fashion [Ferstl and McDonnell 2018] Recently, current tools like
YouTube have provided troves of real-life examples of gestures by a huge variety of speakers
in different contexts [Ginosar et al. 2019, Yoon et al. 2019].

A litany of tools is then used to dissect and analyze these gestures. Mainly from audio and
video, a variety of annotation schemes have been developed for the purposes of segmenting
and assigning meaning to sections of gestures [Chafai et al. 2007, Kipp 2014, Neff et al.
2010]. Such schemes are validated by determining internal consistency and inter-annotator
agreement, thereby generating a reliable metric through which gesture elicitation techniques
as well as gestures themselves can be compared along many axes.

Motion capture has also gained prominence in the gesture-capture space. Motion capture
allows precise information on the spatial and temporal aspects of gesture, which can lead to
powerful insights into how gesture correlates to speech and other elements of nonverbal be-
havior [Luo et al. 2009]. However, this equipment is also expensive, can be cumbersome or
distracting for participants, and still suffers from technical inaccuracies, particularly for cap-
turing hands. And technological advances have allowed still other tools, such as gyroscopes,
accelerometers, wiimote, and even VR controllers to sometimes be used to capture informa-
tion about gestures [Corera and Krishnarajah 2011].

Using these and other technologies, numerous data sets have gained popularity for use
of studying, comparing, and animating gestures. This includes a wide range of visual tech-
nologies, from over 30 camera angles [Joo et al. 2017] to one central camera [Cooperrider
2014], and from set gestures in tightly controlled staging conditions [Gunes and Piccardi
2006, Hwang et al. 2006] to spontaneous recordings collected completely outside laboratory
settings [Ginosar et al. 2019, Yoon et al. 2019]. Along with a growing interest in open science
and data set production, new annotation tools such as the Visual Search Engine for Multi-
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modal Communication Research [Turchyn et al. 2018], which allows researchers to rapidly
search data sets for specific types of motion, are becoming more sophisticated and widely
used.

7.2.5 Evaluation
Evaluations of these models must be as application-driven as the selection and performance
of the gestures themselves. And, while some metrics offer the comfort of traditional statistical
analysis or straightforward interpretations, the right metrics to evaluate a model might be as
difficult to determine as the gestures themselves.

Manipulating gesture can impact how viewers perceive an agent’s personality traits [Neff
et al. 2010] as well as common factors of interest such as trustworthiness, persuasiveness
[Poggi and Pelachaud 2008], and naturalness [Maatman et al. 2005], often using self-reported
subjective measurement techniques. However, these factors are usually difficult to measure
directly. Many individual gestures may be produced over the course of a relatively short
utterance, leading to a litany of issues for how best to parse and recreate the timing of gestures
[Chiu and Marsella 2014, Wachsmuth and Kopp 2001, Wilson et al. 1996]. This is even further
complicated once a gesture has been selected for evaluation, because humans are notoriously
bad at consciously discerning what does and does not look natural [Ren et al. 2005], for
example.

For this reason, a variety of other metrics may be employed to measure the performance
of generative models across axes of interest. Providing a forced-choice between the original
input gesture and the model’s output and comparing results versus a random production may
be an alternative way to allow users to express preference for gesturing behavior [Lhommet
and Marsella 2013]. Mixed methods may also be used, for example giving users a chance
to freely write an utterance that could accompany a gesture and perform a thematic analysis
on the generated utterances. Minimally, this method can be used during pilot experiments to
determine appropriate terminology for classic fixed-choice responses [Bryman 2017].

Although it may seem intuitive that gestures should be evaluated by interpretability or
clarity, this may not always be the case. For instance, an agent may actually intentionally
perform a gesture which contradicts the utterance. The ultimate goal is to evaluate the
gesture’s consistency with the desired communicative function. That function, though, must
be tailored to the particular context and uses for that social agent.

An alternative to subjective measurements, one can evaluate gestures in terms of do they
have the desired effect on behavior. For example, a range of experimental games have been
used to explore the effect of an agent’s nonverbal behavior on a human participant’s behavior.
For example, prisoners dilemma[De Melo et al. 2009], the ultimatum game [Nishio et al.
2018] and the desert survival task [Khooshabeh et al. 2011]

When the physical motion properties of a gesture are available, as in the BVH (Bounding
Volume Hierarchy) file format used in motion capture and animation work, objective metrics
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concerning the physical properties can be used to evaluate gestures. The challenge here
becomes relating these properties to communicative functions and nonverbal behavior.

Tools to deploy evaluations are also advancing rapidly. Whereas previously researchers re-
quired individuals to make in-person evaluations of many gestures, crowdsourcing platforms
such as Amazon’s Mechanical Turk and Prolific now imbue the possibility of rapidly acquir-
ing many “first-impression” measures on many different gestures. This has the added benefit
of reducing the burden on viewers, as well as reducing any fatigue effects of rating many dif-
ferent gestures. However, crowdsourcing platforms often offer varying quality in participant
responses, and some demographic elements cannot be verified, making precise research chal-
lenging on this medium [Breazeal et al. 2013]. Additionally, crowd-sourced participants may
be non-naive “expert survey-takers,” which can skew study results [Downs et al. 2010]. Study
design elements such as verifying attentiveness, longitudinal studies, and mixed method qual-
itative analyses of free responses are able to overcome some of these challenges [Chandler
et al. 2014, Rouse 2015].

Ultimately, the evaluation of a model must be specific to both its implementation and
application.

7.3 Similarities and Differences in Intelligent Virtual Agents and
Social Robots
Both social robots and virtual agents are discussed when considering the future of human-
computer interactions. The application domains which researchers in each field aim to apply
these artificial social agents largely overlap, and include personal assistance, companionship,
education, leisure, and clerical work [Riek 2014].

The importance of co-speech gesture in both domains has been strongly established,
albeit with discrepancies as to the impact of physical embodiment [Li 2015]. Gesture is
widely acknowledged as vital in initiating social conversation [Satake et al. 2009], building
rapport [Riek et al. 2010], and increasing human-likeness [Salem et al. 2013] for both virtual
agents and social robots. Non-verbal behavior in social-robots also increases users abilities to
maintain mental models of the robot’s internal state [Breazeal et al. 2005], which is vital in
co-operative tasks [Hiatt et al. 2011].

So far the algorithms we have described have been agnostic to the agent that may employ
them. In this section we explore the similarities between gesture generation in virtual agents
and social robots, but more pressingly the acute challenges that come with realizing gestures
on physical devices.

7.3.1 Physical presence
A significant body of literature suggests that robots gain some benefit to social interaction
over virtual agents [Thellman et al. 2016]. Techniques which require physical presence, such
as user mimicry and attention-grabbing motions [Fridin and Belokopytov 2014], may give
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robots an edge on virtual agents in terms of boost learning outcomes in tutoring settings
[Belpaeme et al. 2018, Leyzberg et al. 2012], particularly for children [Jost et al. 2012]. Social
robots have also been shown to be more helpful and enjoyable in interactions than their virtual
counterparts for adults who are familiar with robots [Wainer et al. 2007]. However, robots also
suffer from very high user expectations with respect to physical interaction and ability to sense
the environment [Lee et al. 2006].

Many of these evaluations are task-based, or based solely on physical embodiment and not
about specific movements of gestures on robots versus virtual agents. It is unclear how these
physical properties transfer to gestures’ communicative properties.

7.3.2 Challenges of physicality
There are many reasons why it is difficult to compare human-like gestures on virtual agents
and robots, due to robot form, function, movement capabilities, environmental limitations,
and the high stakes of making movement mistakes in a robot. These limitations require
creativity, artistry, and thorough exploration to realize communicative expression in new ways
on physically limited robots. Ultimately, individual use-cases must be taken into account
when determining the trade-off between utilizing a virtual agent or a social robot for specific
purposes.

Humans have many more degrees of freedom (DOFs) in motion than most commercially
available robots, and especially the social robots seen today [Leite et al. 2013]. High-DOF
robots are costly and more difficult to program than simpler counterparts. While a few
humanoid robots with potentially full expression do exist [Robotics a, Shigemi et al. 2019],
many more exist with humanoid shapes but severely limited expression [Gouaillier et al. 2009,
Robotics b], and still more bypass any attempt at humanoid presentation in favor of more
abstract forms [Anki, Breazeal 2014, Embodied]. For this reason, most generative algorithms
designed for virtual agents must be re-mapped onto a robot’s more limited expressive abilities,
which can make gestures appear awkward or mis-timed [Bremner et al. 2009, Ng-Thow-Hing
et al. 2010].

In most cases industrial robots are equipped with a set of pre-recorded gestures that are not
generated on-line but simply replayed during human-robot interaction, as seen in [Gorostiza
et al. 2006] or [Salem et al. 2012, Sidner et al. 2003]. Aligning speech to motion is particularly
difficult in robots due to path-planning required for novel gestures [Kopp et al. 2008].

Existing in the physical environment, while potentially more compelling and certainly with
a wider range of physical tasks which may be accomplished, comes with distinct challenges
when it comes to gesture. Problems unique to robots extend from motion planning to design,
control, sensing, biomimetrics, and complex software [De Santis et al. 2008]. Additionally,
robots must be consistently aware of their environment, including the people with whom
they interact. Peri-personal space is a long-studied phenomenon in human-human interactions
[Burgoon 1991, Burgoon and Aho 1982, Sussman and Rosenfeld 1982], and well-documented
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(a) Asimo by Honda (b) Pep-
per by
SoftBank
Robotics

(c) Jibo, photo
courtesy of
NTT DISRUP-
TION US Inc.

(d) Cozmo, photo
courtesy of Digi-
tal Dream Labs

Figure 7.3: some examples of contemporary social robots, ranging from humanoid with arms
and legs, to less humanoid but still distinctly human with torso and arms, to more abstract but
retaining a head and torso shape, to completely un-humanoid (and object-like).
Photos retrieved from global.honda/innovation/robotics
https://www.softbankrobotics.com/emea/en/pepper
https://www.jibo.com
https://www.anki.com

in virtual agents in AR interactions [Ennis et al. 2010, Slater et al. 2000], but establishing
a “social safety zone,” seems to be an especially salient issue when involving heavy or
unfamiliar robots [Truong and Ngo 2016]. The problem of keeping robots at a socially
acceptable distance from humans during interactions in itself requires knowledge of computer
vision, psychology, and robotic path-planning [Gupta et al. 2018]. Despite the importance of
proprioception and path-planning, most robots on the market today to not have robust full-
body sensors capable of pro-actively avoiding collision, which means that some gestures could
put the robot at risk of hurting itself or others.

Another ongoing challenge in gesture research for social robotics is the mapping of
communicative intent to expression onto the many abstract forms of existing devices (e.g.
those found in Fig. 7.3) [Hoffman and Ju 2014]. Attribution of internal states from abstract
motions has long been chronicled and analyzed [Dittrich et al. 1996, Pollick et al. 2001],
but the field is currently in the earliest stages of developing framework which is capable of
mapping the many elements of expression onto abstract frames [Van de Perre et al. 2018]. The
art of mapping communication onto abstract bodily forms that are human-understandable is
yet to be mastered.
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7.3.3 Reach and Market Penetration
One of the fundamental distinctions between VAs and SRs is the ease of reaching users. VAs
have been deployed on computers, web pages, tablets and phones. Any device with a screen
can be used to realize a VA application. The fact that they can deployed so widely has special
relevance for less-wealthy countries where the market penetration of cell phones is very high
due to limitations in traditional landlines for telecommunications. For the user, there may be
no significant additional hardware cost in using a VA application. SRs in comparison require
the purchase of the the robot and therefore are more of a luxury as opposed to a necessity
given limited budgets. This is especially true of the current crop of SRs that can socialize but
are incapable of performing useful physical actions that could justify the cost.

7.3.4 Interdisciplinary collaboration
The fields of social robotics and virtual agents overlap largely. Both attempt to facilitate
natural, socially-fulfilling, and productive interactions in a wide range of fields, including
medicine, teaching, and leisure. Both are concerned with the artificial agent’s Theory of
Mind [Breazeal and Scassellati 1999] and see agents as tools to study wider psychological
phenomenon under tight controls, such as gender effects of gestures in human-computer
interactions [Feng et al. 2017, Siegel et al. 2009]. Additionally, some properties known to
be important in human interpretation of gesture, such as smoothness, shape, and timing, are
shown to transfer to gestures in robots [Bremner et al. 2009].

The need and call for collaboration is not new [Holz et al. 2009]. Some researchers have
begun using generative models originally developed on virtual agents with social robots,
notably [Salem et al. 2010] and [Le and Pelachaud 2011]. This is made possible through
common frameworks such as the dominant SAIBA framework [Kopp et al. 2006], described
in detail in Chapter 16 of this handbook, which may be combined to create an agent-agnostic
generative pipeline [Le et al. 2012].

However, work in this area needs much more exploration. Collaborations need more than
experts in robotics and virtual agents, but must include professionals in interaction and
aesthetic design, animation, market research, and other artists. Without a holistic team, robots
continue to be designed according to physical constraints, with behaviors, animations, and
designs then being forced to work within the physical constraints of the robot. Rather than
separate disciplines, all aspects of a social robot or agent must be included when considering
specific use cases and audiences for commercial success.

This is especially true in gestures, for which studies of interpretation of non-humanoid
motions are academically limited, but anecdotally extremely expressive. Consider Disney’s
many non-humanoid and non-verbal characters. In addition to actual robot characters Wall-E
and Eve, animators use many cues to portray both character traits about animal characters,
as well as express a wide variety of communicative functions in non-humanoid ways. The
transference of gesture properties onto non-humanoid characters without humanoid gesture
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components (described in 7.2.1), both virtual and robotic, is something that seems to be
mastered by artists storytellers, but not yet rigorously harnessed by academic researchers in
either robotics or virtual agents.

7.4 Current Challenges
The technology and tools for modeling and generating gestures continues to advance. Further,
larger data sets are being captured and new techniques are being used to process that data,
further enabling machine learning approaches. These advances will provide new power to
address challenges and opportunities. Here, we discuss what some of those challenges.

7.4.1 Gestures and the context that informs their use
One of the key challenges we face in realizing gestures for social agents is the complex
relation of gestures to the context of the interaction and overall structure of the discourse.
As has been pointed out repeatedly by gesture researchers (e.g. [Kendon 2000]), gestures,
specifically their communicative function, are not simply a vivid illustration of the dialog
text. For example, pragmatics concerns the context in which the interaction occurs and the
impact of that context on deixis, turn-taking, across utterance structure of the interaction,
presuppositions and implicature. These factors have a profound effect on gesture use. An
obvious example of this concerns deictic gestures. Utterances such as “You should talk to
Michael,” or “Leave by the door on the right,” may or may not co-occur with a deictic gesture.
Another example is the cross utterance use of gestural space, where one utterance can locate
an abstract concept in gesture space and in a subsequent utterance, gestures can refer back
to that location so as to refer to that original concept. Another example of the extra-utterance
factors impacting gestures concerns how mental state leakage discussed above impacts gesture
use and gesture performance. Further the roles, cultures, relational history of the participants
impact their gestures. Yet another example is when gestures are used to convey information
off the record or even contradict the content of the utterance. Broadly, a gesture can be a
distinct speech act from the speech act realized by the utterance.

These examples pose significant challenges to realizing rich gesturing in social agents,
regardless whether the approach is end-to-end machine learning, rule-based or some hybrid.
Fundamentally capturing the above requires some approach to modeling or inferring this
extra-utterance information.

In the case of end-to-end machine learning approaches that map an utterance to gesture,
the external context of the utterance, the overall structure of the interaction, off-the record
information to convey gesturally and arguably even the the internal mental states and roles
of the participants will not be apparent in the individual utterance text or prosody, making it
unlikely that a mapping from utterance to gesture that takes into account just the utterance
will capture the richness of human gestures. Even in the case of rule-based methods, there
must be some way of modeling this information over the course of interaction.
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7.4.2 Complex Gesturing
A related challenge concerns complex gesturing. As illustrated above, gesture categories are
fluid, and a single gesture often combines elements of many different categories, which are
related to elements of the interaction through multiple cues. This complexity is compounded
by the fact that gestures can both stand alone individually as well as tie together pragmatic,
semantic and rhetorical elements that span utterances.

In order to use these various sources of information to gesture effectively both for individ-
ual turns of dialog as well as coherently and naturally over an utterance and multiple dialog
turns, researchers in gesture as well as conversational AI will need to come together to cre-
ate a computationally organized model that tracks semantic, environmental, conversational,
and spatial context for interactions. This underscores the tight relationship between gesture,
speech and the overarching interaction, and highlights how integrated gesture generation sys-
tems need to be with speech production and pragmatics in order for virtual agents to be as
human-like as possible.

7.4.3 Role of Participants
A gesture model also needs to consider the participants themselves. In order to gesture
appropriately the social agent should take into account their conversational partner. Humans
tailor gestures to the individual to whom we are speaking [de Marchena and Eigsti 2014]
which can have significant effects on how the speaker is perceived [Lee et al. 1985]. This
can include some basic automatic responses, like mirroring, but also encompasses extremely
sophisticated complex modeling of the user’s mental state. Adjusting gestures to be smaller
or slower when discussing sensitive topics, taking into account the age of the listener or
making large, pointed gestures to persuade a crowd are a few examples of acutely different
circumstances during which the context must be detected, and the implications analyzed, to
adjust gesture parameters [Poggi and Vincze 2008]. Crucially, this aspect of the context must
affect both the selection as well as production of gestures.

This raises the question of how an agent infers a conversational partners’ reactions. Are
they, for example, being persuaded or amused by the agent’s use of expressive gestures.
Clearly, an agent should select a gesture that is relevant and meaningful to its communica-
tive function and consequently be able to infer whether that communicative function is being
realized in the human partners in the interaction. This brings up issues of detecting user en-
gagement and inferring mental state, as well as a growing issue of concern in gesture research:
cross-cultural interpretation. As the world becomes more interconnected and developers of so-
cial agents become increasingly interested in international market places, the importance of
gesturing in a culturally sensitive way is gaining much greater importance. This includes not
only the amount or style of gesture, but gets into deeper issues of conceptual organization and
metaphorical hierarchies that exist in different cultures (such as the ’time as a line’ metaphor
discussed in 7.1.3) . This means that metaphoric gestures which convey a particular mean-
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ing in one culture may carry no or even an opposite meaning in another, which can result in
critical misunderstandings between agents and users.

7.4.4 Ambiguity
On the other hand, one might well argue that human-like or “natural” behaviors may bring
ambiguity. Instead of an agent conveying agitation by the dynamics of their gestures maybe
it is just as or even more effective to put a sign over agent saying it is agitated or altering
the color of the agent. Specifically, some work suggests that when gestures are too complex
[Saund et al. 2019] in the sense of a single gesture conveying multiple pieces of information,
they become less uniformly interpreted across subjects – muddling the message an agent may
attempt to convey. As the ability to produce complex gestures increases, researchers will need
to consider different ways to measure trade-offs in performance of generative models, from
speed and complexity to optimizing for user understanding.

Finally, one question that still remains as an overarching guiding principle is just how
human-like does the behavior of the agent have to be. If one ascribes to the Media Naturalness
hypothesis, divergence from the naturalness of face-to-face interaction, broadly speaking but
specifically here in terms of nonverbal behavior, can lead to an increase in cognitive effort, an
increase in communication ambiguity, and a decrease in physiological arousal [Kock 2005].

7.4.5 The application
Unquestioningly, these trade-offs will be context-dependent, specifically application depen-
dent. In a social skills training application to train doctors to break bad news to patients [Kron
et al. 2017, Ochs et al. 2017], naturalness is a paramount consideration in part because people
are being trained to deal with ambiguities.

In contrast, a learning application for children that seeks to increase engagement as a child
learns to count may forego any attempt at naturalness. Here there are opportunities to draw on
a wide range of research. There is animal and human research on supernormal stimuli that can
provoke primal responses in people [Barrett 2010]. The performance arts, specifically theatre
and dance can provide more stylized and less ambiguous means of conveying information.
Notably social agent researchers [Marsella et al. 2006, Neff et al. 2008] have looked at
Delsarte’s work on gesture that heavily influenced early silent film acting as a means of gesture
selection and performance, as well as Laban Movement Analysis to manipulate the animation
of expressive gestures [Chi et al. 2000]

7.4.6 Impact
This discussion underscores the critical challenge of understanding and measuring the impact
of gestures on human participants.

One way to evaluate this impact across large demographic populations is through increas-
ingly popular crowdsourcing platforms [Breazeal et al. 2013, Morris et al. 2014]. In addition
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to evaluating a social agent’s gesture performance, crowdsourcing opinions makes a combined
approach to gesture generation possible: generative models which use crowd or expert input
to create and refine generative models of dialog for a social agent [Feng et al. 2018] could
be extended to gesture. Research has begun using crowd feedback in model tuning to adjust
gestures according to different social and conversational contexts. By using machine learning
to uncover patterns in user preference and determine salient features in gesture motion, we
may be able to increase model performance and produce gestures that are more contextually
appropriate and complex than simply using top-down expert-driven rule-based techniques or
end-to-end deep learning. While this is a relatively new technique in the field of gesture gener-
ation, finding ways to seamlessly incorporate human judgements into the generation process is
a promising avenue for producing natural, meaningful, and relevant gestures in social artificial
agents.

7.5 Future Directions
While this chapter has discussed state-of-the-art implementations of gestures in social agents,
there are many promising horizons for future research that will allow still better gesture
performances as well as insights into the cognitive processes behind gesture production.

7.5.1 Big data and gesture
It is impossible to talk about the future of gesture research without addressing the research
field of Big Data. Using neural networks to create generative models of gesture for individual
speakers is a present reality. Ginosaur et al. [Ginosar et al. 2019] presents a model with that
produces gestures built off of L1 regression and adversarial neural networks. This model
produces gestures that are nearly-indistinguishable from the original speaker in many cases,
but which are also driven exclusively by audio inputs.

This approach simplifies the inherently cognitively-driven and complex nature of gesture.
This model generates gesture from audio, not communicative intent. This attempts to drive
gesture behavior from smaller spaces (e.g. prosody) because the entire space of gesture mean-
ing does not have a neat mapping. This model, for example does not handle the complexity of
semantics, rhetoric, or affect (aside from how those elements are expressed in voice qualities).
It could be argued that middle layers of these networks implicitly derive other salient features.
However, the gestures which result from these methods have been judged by naturalness with
a particular piece of audio, not communicated message.

This is problematic, as gestures have the ability to change the interpretation of the same
audio [Jamalian and Tversky 2012, Lhommet and Marsella 2013]. Without a principled
way to deal with semantics, machine learning techniques currently remove meaning and
communicative intention out of the equation when it comes to gesture generation.
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So the challenge remains to move to deep learning approaches that have the potential to
generate not only extremely natural beat gestures, but also more complex, nuanced, and subtle
gestures as well.

7.5.2 Using gesture to make inferences about cognition
Using deep learning to generate gestures, however, misses the deeper complexity of gesture
research: the cognitive relationship between thought and behavior. While neural networks
given sufficient data may produce extremely high quality behavior, it sheds less light on the
way humans actually store, process, generate, and then transmit thoughts. For artificial social
agents to be truly human in their expression, an alternative view is to assume they must abide
by the same cognitive processes and limitations as we do 2.

This possibility is eloquently expressed by the theory of Embodied Cognition [Hostetter
and Alibali 2008]. The theory of Embodied Cognition states that many features of cognition
are shaped by the human experience of a physical body. This includes both high level mental
constructs (such as concepts and categories) as well as performance on various cognitive tasks
(such as reasoning or judgment). According to this hypothesis, the organization of human
thought is limited by the constraints of our body not only neurologically, but by our mental
incapacity to imagine what it would be like to exist without our body. This drives our physical
metaphors, both gestural and in language, and indeed may be reflected in a hierarchy of
metaphors in our own thoughts. With this in mind, it may be impossible to create a perfectly
human-like gestural model for social artificial agents unless their thoughts are organized like
ours.

In this view, part of the goal modeling gestures is to make inferences about our own cog-
nition that may be applied to social artificial agents. By demonstrating correlations between
expressed thoughts and physical motions, we may uncover elements of this mental hierarchy
to learn about the structure and organization of our own thoughts. These insights can propel
both the field of cognitive science as well as human-computer social interaction.

7.5.3 “Better than human”
One of the common assumptions in the design of virtual agents is that human appearance
and behavior is a gold standard for effective face-to-face interaction. This assumption is
based on several factors. The nonverbal behaviors of human-human interaction are both our
evolutionary heritage and socially-learned. Therefore, an agent using these behaviors will be
able to leverage the various deliberate inferences and automatic processes that are in play
when we perceive these behaviors.

Human-human interaction is also often a guiding principle informing the design of social
robots. Of course, the behaviors invariably get distilled down when realized in a robot, often

2 Although it is left to context whether the goal of an agent is to be human-like, or communicatively efficient, or
agreeable to talk to, etc.
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(a) Irridescence (b) Caress of the Gaze

Figure 7.4: Examples of Interactive Wearables from Behnaz Farahi.

due to mechanical constraints. For example, subtlety in dynamics may be removed, degrees
of freedom may be removed such as not having fully functional hands. Some channels may
be removed altogether such as eliminating eyebrows.

The use of human-human interaction as a design goal or even a guiding principle risks
ignoring several factors. We are very adaptive and in a persistent relation we could adapt to
an artificial agent’s behavior. That adaptation in turn may even help to build a stronger bond
with an agent, for example, as a child requires a shared secret mode of interaction with an
agent. Additionally, human nonverbal behavior is often ambiguous and we may want to avoid
that ambiguity in a particular application. Rather the focus may be on the most effective way
to communicate the information, most effective in terms of an application’s goals. Finally,
by limiting ourselves to human nonverbal modalities, we ignore that we could employ novel
non-human modalities.

For example, the work of Behnaz Farahi [Farahi 2016, 2018, 2019], investigates novel
modalities in interaction. Her ”bio-inspired” work on the interactive installation Irridescence
(Figure 7.4a, [Farahi 2019]) draws inspiration from the gorget of the male Anna’s Humming-
bird that changes color during courtship. Irridescence changes colors and make patterns in
response to observer’s movements and facial expressions. Similarly, Caress of the Gaze is a
wearable that explores how ”clothing could interact with other people as a primary interface
[Farahi 2016].” It uses eye-gaze tracking technologies to respond to the observer’s gaze. Such
work explores the potential of opening up new modalities in face-to-face interaction.

7.6 Summary
In this chapter we discussed the many ways which gesture enhances communication. Gesture
acts as a guide for dialog, an influence on the observer, and a reflection of the speaker’s
internal beliefs. We briefly summarized a long history of gesture studies, including myriad
ways to classify gesture by both motion and communicative function. We discussed how
these functions, combined with individual and cultural context, may reveal information about
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the speaker’s attitudes and mental states, as well as more complex information about an
individual’s cognition.

We then discuss current implementations of gestures in virtual agents. There are many
ways to realize compelling gestures in social agents, but these must be centered on the
communicative function of the gesture. Using frameworks which abstract implementation
from communicative function allows researchers to separate the problem of gesture selection
and animation. Both machine learning and rule-based techniques offer promising solutions
to these difficulties, but face similar challenges in terms of gesture collection and model
evaluation.

These models may be deployed on either virtual agents or social robots, with the latter
presenting great physical challenges, but offering potentially greater impact on the viewer.
Abstractions over gesture architectures is necessary to foster interdisciplinary collaboration
between these two closely related mediums.

Despite recent advancements, gesture generation still faces many challenges, such as
generating conversationally (semantically) relevant movements, incorporating complex or
ambiguous gestures, and considering the role of the viewer when modulating gesture behavior.
These must all be taken into consideration in order to achieve the greatest impact of gesture
on an agent’s audience.

New technology constantly advances techniques for studying gesture for both data collec-
tion, and computational modeling of the physical gesture performance. In particular, superhu-
man stimuli offer unique avenues through which to study the impact of gesture, going beyond
the possibilities of human-human studies. Additionally, collaborations in machine learning
and the advancement of computational hardware and infrastructure allow more resources to
use big data and end-to-end modeling of gesture behavior. These new technologies present op-
portunities understand gesture’s relationship to the semantic context in which it is produced,
which will lead to new insights in human behavior, communication, and cognition.
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F. Eyben, M. Wöllmer, and B. Schuller. 2009. Openear—introducing the munich open-source emotion
and affect recognition toolkit. In 2009 3rd international conference on affective computing and
intelligent interaction and workshops, pp. 1–6. IEEE.

B. Farahi. 2016. Caress of the gaze: A gaze actuated 3d printed body architecture.

B. Farahi. 2018. Heart of the matter: Affective computing in fashion and architecture.

B. Farahi. 2019. Iridescence: Bio-inspired emotive matter. In ACADIA 2019: Ubiquity and Autonomy,
Published in proceedings of the 39th Annual Conference. Austin, USA.

A. Feng, Y. Huang, M. Kallmann, and A. Shapiro. 2012. An analysis of motion blending techniques. In
International Conference on Motion in Games, pp. 232–243. Springer.
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G. Zao in Calbris, J. Montredon, and P. W. Zaü. 1986. Des gestes et des mots pour le dire, p. 145. Clé
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J. Cassell, H. H. Vilhjálmsson, and T. Bickmore. 2004. Beat: the behavior expression animation toolkit.
In Life-Like Characters, pp. 163–185. Springer.

G. Castellano, S. D. Villalba, and A. Camurri. 2007. Recognising human emotions from body
movement and gesture dynamics. In International Conference on Affective Computing and Intelligent
Interaction, pp. 71–82. Springer.
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Ş. Özçalışkan and S. Goldin-Meadow. 2005. Gesture is at the cutting edge of early language
development. Cognition, 96(3): B101–B113.

T. Pedersen, S. Patwardhan, J. Michelizzi, et al. 2004. Wordnet:: Similarity-measuring the relatedness
of concepts. In AAAI, volume 4, pp. 25–29.

J. W. Pennebaker, M. E. Francis, and R. J. Booth. 2001. Linguistic inquiry and word count: Liwc 2001.
Mahway: Lawrence Erlbaum Associates, 71(2001): 2001.

I. Poggi and C. Pelachaud. 2008. Persuasion and the expressivity of gestures in humans and machines.
Embodied communication in humans and machines, pp. 391–424.

I. Poggi and L. Vincze. 2008. Gesture, gaze and persuasive strategies in political discourse. In
International LREC Workshop on Multimodal Corpora, pp. 73–92. Springer.

I. Poggi, C. Pelachaud, F. de Rosis, V. Carofiglio, and B. De Carolis. 2005. Greta. a believable embodied
conversational agent. In Multimodal intelligent information presentation, pp. 3–25. Springer.



BIBLIOGRAPHY 51

F. E. Pollick, H. M. Paterson, A. Bruderlin, and A. J. Sanford. 2001. Perceiving affect from arm
movement. Cognition, 82(2): B51–B61.

G. Radden. 2003. The metaphor time as space across languages. Zeitschrift für interkulturellen
Fremdsprachenunterricht, 8(2).

F. H. Rauscher, R. M. Krauss, and Y. Chen. 1996. Gesture, speech, and lexical access: The role of
lexical movements in speech production. Psychological science, 7(4): 226–231.

D. Reidsma, I. de Kok, D. Neiberg, S. C. Pammi, B. van Straalen, K. Truong, and H. van Welbergen.
2011. Continuous interaction with a virtual human. Journal on Multimodal User Interfaces, 4(2):
97–118.

L. Ren, A. Patrick, A. A. Efros, J. K. Hodgins, and J. M. Rehg. 2005. A data-driven approach to
quantifying natural human motion. ACM Transactions on Graphics (TOG), 24(3): 1090–1097.

L. D. Riek. 2014. The social co-robotics problem space: Six key challenges. Robotics Challenges and
Vision (RCV2013).

L. D. Riek, P. C. Paul, and P. Robinson. 2010. When my robot smiles at me: Enabling human-robot
rapport via real-time head gesture mimicry. Journal on Multimodal User Interfaces, 3(1-2): 99–108.

H. Robotics, a. Sophia. https://www.hansonrobotics.com/sophia.

S. Robotics, b. Pepper. https://www.softbankrobotics.com/emea/en/pepper.

S. V. Rouse. 2015. A reliability analysis of mechanical turk data. Computers in Human Behavior, 43:
304–307.

M. Salem, S. Kopp, I. Wachsmuth, and F. Joublin. 2010. Generating robot gesture using a virtual
agent framework. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
3592–3597. IEEE.

M. Salem, S. Kopp, I. Wachsmuth, K. Rohlfing, and F. Joublin. 2012. Generation and evaluation of
communicative robot gesture. International Journal of Social Robotics, 4(2): 201–217.

M. Salem, F. Eyssel, K. Rohlfing, S. Kopp, and F. Joublin. 2013. To err is human (-like): Effects of robot
gesture on perceived anthropomorphism and likability. International Journal of Social Robotics, 5(3):
313–323.

S. Satake, T. Kanda, D. F. Glas, M. Imai, H. Ishiguro, and N. Hagita. 2009. How to approach humans?
strategies for social robots to initiate interaction. In Proceedings of the 4th ACM/IEEE international
conference on Human robot interaction, pp. 109–116.

C. Saund, M. Roth, M. Chollet, and S. Marsella. 2019. Multiple metaphors in metaphoric gesturing.
In 2019 8th International Conference on Affective Computing and Intelligent Interaction (ACII), pp.
524–530. IEEE.

B. Scassellati. 2002. Theory of mind for a humanoid robot. Autonomous Robots, 12(1): 13–24.

B. Schuller, A. Batliner, S. Steidl, and D. Seppi. 2011. Recognising realistic emotions and affect in
speech: State of the art and lessons learnt from the first challenge. Speech Communication, 53(9-10):
1062–1087.

S. Shigemi, A. Goswami, and P. Vadakkepat. 2019. Asimo and humanoid robot research at honda. In
Humanoid robotics: A reference, pp. 55–90. Springer.

C. L. Sidner, C. Lee, and N. Lesh. 2003. The role of dialog in human robot interaction. In International
workshop on language understanding and agents for real world interaction.



52 BIBLIOGRAPHY

M. Siegel, C. Breazeal, and M. I. Norton. 2009. Persuasive robotics: The influence of robot gender on
human behavior. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
2563–2568. IEEE.

M. Slater, A. Sadagic, M. Usoh, and R. Schroeder. 2000. Small-group behavior in a virtual and real
environment: A comparative study. Presence: Teleoperators & Virtual Environments, 9(1): 37–51.

M. Stone, D. DeCarlo, I. Oh, C. Rodriguez, A. Stere, A. Lees, and C. Bregler. 2004. Speaking with
hands: Creating animated conversational characters from recordings of human performance. ACM
Transactions on Graphics (TOG), 23(3): 506–513.

N. M. Sussman and H. M. Rosenfeld. 1982. Influence of culture, language, and sex on conversational
distance. Journal of Personality and Social Psychology, 42(1): 66.

W. R. Swartout, J. Gratch, R. W. Hill Jr, E. Hovy, S. Marsella, J. Rickel, and D. Traum. 2006. Toward
virtual humans. AI Magazine, 27(2): 96–96.

A. Takeuchi and T. Naito. 1995. Situated facial displays: towards social interaction. In Proceedings of
the SIGCHI conference on Human factors in computing systems, pp. 450–455.

K. Takeuchi, D. Hasegawa, S. Shirakawa, N. Kaneko, H. Sakuta, and K. Sumi. 2017. Speech-to-gesture
generation: A challenge in deep learning approach with bi-directional lstm. In Proceedings of the 5th
International Conference on Human Agent Interaction, pp. 365–369.

L. Talmy. 1985. Grammatical categories and the lexicon. Language typology and syntactic description,
3: 57–149.

S. Thellman, A. Silvervarg, A. Gulz, and T. Ziemke. 2016. Physical vs. virtual agent embodiment and
effects on social interaction. In International conference on intelligent virtual agents, pp. 412–415.
Springer.

X.-T. Truong and T.-D. Ngo. 2016. Dynamic social zone based mobile robot navigation for human
comfortable safety in social environments. International Journal of Social Robotics, 8(5): 663–684.

S. Turchyn, I. O. Moreno, C. P. Cánovas, F. F. Steen, M. Turner, J. Valenzuela, and S. Ray. 2018.
Gesture annotation with a visual search engine for multimodal communication research. In Thirty-
Second AAAI Conference on Artificial Intelligence.

USC Institute for Creative Technologies. Smartbody. https://smartbody.ict.usc.edu/download2.

G. Van de Perre, H.-L. Cao, A. De Beir, P. G. Esteban, D. Lefeber, and B. Vanderborght. 2018.
Generic method for generating blended gestures and affective functional behaviors for social robots.
Autonomous Robots, 42(3): 569–580.

I. Wachsmuth and S. Kopp. 2001. Lifelike gesture synthesis and timing for conversational agents. In
International Gesture Workshop, pp. 120–133. Springer.

J. Wainer, D. J. Feil-Seifer, D. A. Shell, and M. J. Mataric. 2007. Embodiment and human-robot
interaction: A task-based perspective. In RO-MAN 2007-The 16th IEEE International Symposium on
Robot and Human Interactive Communication, pp. 872–877. IEEE.

A. Whiten and R. W. Byrne. 1988. The machiavellian intelligence hypotheses.

A. D. Wilson, A. F. Bobick, and J. Cassell. 1996. Recovering the temporal structure of natural gesture.
In Proceedings of the Second International Conference on Automatic Face and Gesture Recognition,
pp. 66–71. IEEE.



BIBLIOGRAPHY 53

J. R. Wilson, N. Y. Lee, A. Saechao, S. Hershenson, M. Scheutz, and L. Tickle-Degnen. 2017. Hand
gestures and verbal acknowledgments improve human-robot rapport. In International Conference on
Social Robotics, pp. 334–344. Springer.

C. Wolff. 2015. A psychology of gesture. Routledge.

Y. Xu, C. Pelachaud, and S. Marsella. 2014. Compound gesture generation: a model based on ideational
units. In International Conference on Intelligent Virtual Agents, pp. 477–491. Springer.

Y. Yoon, W.-R. Ko, M. Jang, J. Lee, J. Kim, and G. Lee. 2019. Robots learn social skills: End-to-end
learning of co-speech gesture generation for humanoid robots. In 2019 International Conference on
Robotics and Automation (ICRA), pp. 4303–4309. IEEE.

G. Zao in Calbris, J. Montredon, and P. W. Zaü. 1986. Des gestes et des mots pour le dire, p. 145. Clé
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