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1. Social Cognitive Neuroscience and SIA  

Increasing technological progress in the last decades has facilitated the development of artificial 

agents. Social robots, virtual agents, and smart assistants have been introduced slowly but firmly 

into our daily lives. From entertainment to education, from healthcare to the conquest of the solar 

system, artificial agents are becoming increasingly essential for the human social landscape. 

However, before they can become fully integrated into our lives, it is important to consider how to 

measure the impact interactions with these agents might have on human cognition, and how to 

evaluate whether the behavior of artificial agents has desired effects on everyday life.  

 In order to attain an overarching comprehension of the dynamics of social interactions with 

artificial agents, research in human–agent interaction (HAI) would immensely benefit from the 

methods and approaches used in social cognitive neuroscience (SCN). This discipline focuses on 

studying the intricate interplay between social and neurophysiological aspects when the brain is 

engaged in social-cognitive processing during interactions with others, using objective behavioral 

and neuro-physiological measures in carefully designed and controlled experiments. SCN is 

characterized by hypothesis-driven experiments that manipulate experimental variables targeting 

specific cognitive processes, and aims at interpreting behavioral responses and their neural 

correlates in the context of theoretical models of social cognition. Adopting methods of SCN for the 

study of social interactions with artificial agents offers multiple advantages. First, in addition to 

other methods commonly used in HAI studies, SCN methods allow examining cognitive 

Page  of 1 38



PR
EP
RI
NT

Accepted preprint Chapter 9 -  Theory of Mind and Joint Attention  

mechanisms that are not necessarily explicit or available to introspection. Specifically, although 

HAI methods, such as subjective ratings, surveys, and questionnaires allow the assessment of 

attitudes, experiences, or perceptions during interactions with artificial agents, using only those 

methods does not cover the more implicit processing of information in social interactions (e.g., 

gaze, posture, voice pitch, turn-taking). Furthermore, the normative interpretation and 

understanding of these signals is typically learned implicitly through experience, which can make it 

difficult for participants to describe it verbally when explicit assessment techniques are used. For 

instance, could you tell how long it takes you to experience mutual gaze or the duration of a 

handshake with a stranger as uncomfortable? You probably have not thought about this before, or 

measured it empirically, which makes it difficult to give a precise answer. Thus, although self-

reported measures are easily obtained and suitable for the assessment of some aspects of social 

cognition, they may be insufficient to evaluate all the different layers of social interactions with 

natural and artificial agents.  

 Another challenge in the assessment of social cognition is to implement paradigms that are 

capable of capturing the dynamic and proactive nature of social interactions, involving predictive 

processes that rely on inferences regarding others’ intentions and mental states. SCN has revealed 

that when interacting with the world, human brains constantly select, process, and compare 

sensory inputs to previous representations of knowledge and experiences to build accurate 

representations of the world in a dynamic cycle that updates priors and adjusts predictions of 

future events [Friston 2005]. Given that these processes also unfold when interacting with the 

social world, any paradigm or method that does not appropriately elicit or allow for the dynamics 

of this process to unfold may not accurately assess the underlying social-cognitive mechanisms 

[Schilbach et al. 2013]. For instance, mutual gaze during conversations varies depending on the 

context and the interlocutor and people are usually unaware of those variations: a cognitively 

demanding conversation elicits less mutual eye contact than chitchatting, and people prefer to look 

longer in the eyes of familiar than unfamiliar people [Beattie and Ellis 2017]. Coming back to the 

original question of how long mutual gaze can last before starting to feel uncomfortable, this 

example shows that it is impossible to define an ideal time window as such behavior is dynamic 

and linked to social context and personal experience. However, we can examine how humans 
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engage in mutual gaze using well-designed experimental protocols that use objective behavioral 

and neurophysiological measures and that do not restrict the natural dynamics of social 

interactions.  

Figure 1. Areas of the brain associated with processing social information. Classification of the 
brain areas linked with social processing and divided in four cognitive processes: (1) The perception of basic 
social stimuli, such as biological motions (V5), part of the body (extra-striate body area, EBA), and faces 
(fusiform face area, FFA); (2) emotional and motivational appraisal, where the amygdala (AMY), the anterior 
insula (AI), the subgenual and perigenual anterior cingulate cortex (ACC), together with the orbitofrontal 
cortex (OFC) are closely linked with subcortical structures as the ventral striatum (VS) and the hypothalamus 
(HTH); (3) Emotional and motivational appraisal areas work closely with regions such as the dorsolateral 
and the medial prefrontal cortex (dlPFC, mPFC) and the ACC in goal-directed, adaptive behaviors, and the 
categorization processes. Finally, (4) areas associated with social attribution, like the ventral premotor cortex 
(vPMC), the superior temporal sulcus (STS), the AI, the posterior cingulate cortex (PCC), and the precuneus 
(PC) participate in more automatic, bottom-up inferences of other people’s mental states; whereas structures 
like the mPFC and the temporoparietal junction (TPJ) are involved in more cognitive theory of mind skills. 
Adapted from Billeke and Aboitiz [2013].  

 Another way in which SCN informs HAI is by elucidating the brain structures involved in 

social cognition using diverse methods such as electroencephalography, functional magnetic 

resonance imaging, and functional near-infrared spectroscopy. The areas and networks involved in 

the processing of social stimuli have been collectively termed “the social brain,” which includes 

structures like the medial prefrontal cortex, the temporoparietal junction, the superior temporal 

sulcus, and the fusiform area, inferior temporal sulcus, among others (see Figure 1).  

 These networks show characteristic patterns of activation during the processing of social 

signals commonly used to communicate interest, highlight the relevance of events or objects in the 
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environment, or coordinate interactions, such as biological motion, facial expressions, and eye and 

head movements. Furthermore, those signals are tightly linked to higher cognitive processes like 

recognizing others’ feelings and internal states, identifying others’ intentions, or deciding whether 

they are friend or foe.  Understanding the neurobiological basis of behavior is crucial for cognitive, 

developmental, clinical, comparative, and social psychology, as well as philosophy and evolutionary 

anthropology [Singer 2012]. In this context, examining the engagement of social brain areas in 

interactions with artificial agents seems like a natural step to follow for HAI as well.” Using a 

combination of subjective/explicit measures like self-report and questionnaires, and objective 

measures like metrics related to performance, behavior, psychophysiology, and neuroimaging, HAI 

is able to have a more comprehensive view of behavioral and brain mechanisms involved in social 

interactions with human and non-human agents. The present chapter provides an overview from 

the perspective of SCN regarding theory of mind (ToM) and joint attention (JA) as crucial 

mechanisms of social cognition and discusses how these mechanisms have been investigated in 

social interaction with artificial agents. In the final sections, the chapter reviews computational 

models of ToM and JA in social robots (SRs) and intelligent virtual agents (IVAs) and discusses the 

current challenges and future directions.  

2. Theory of Mind and Joint Attention—Crucial 

Mechanisms of Social Cognition  
2.1 Theory of Mind  
 Imagine that as you are walking on the street someone is coming from the opposite 

direction toward you. At some point, and before passing each other, the person all of a sudden puts 

the palm of her/his hand on their forehead, stops walking, turns around, and goes back to where 

she/he came from. How would you explain this behavior? Probably, you would guess that she/he 

might have forgotten something and decided to go back. And you might be right. Importantly, most 

of the explanations you would choose to explain the observed behavior would refer to mental 

states, such as thoughts, preferences, intentions, or emotions. This is based on the ability to 

perceive and understand that others have beliefs, desires, goals, and knowledge different from your 
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own and that others’ behavior is driven by their internal representations of the world. Social 

interaction heavily requires awareness of our counterpart’s knowledge of the world [Frith et al. 

1991, Baron-Cohen 1995]. The ability of referring to others’ mental states in explaining their 

behavior has been termed mentalizing [Frith and Frith 2006] or using a ToM [Baron-Cohen 1997]. 

ToM is the basis for a wide range of social processes such as competitive and cooperative joint 

actions, language, action execution, imagination, and even humor. The strategy of referring to 

mental states to predict others’ behavior has also been called adopting the intentional stance 

[Dennett 1971, 1987]. Please note, however, that we distinguish the concept of “intentional stance” 

from the concept of “theory of mind.” The first is related to the general strategy that one adopts 

when explaining the behavior of another agent, based on the assumptions regarding the agents’ 

rationality and capacity of having mental states. The latter, on the other hand, is the active process 

of inferring a particular mental state in a particular context. One can infer a wrong mental state 

based on observation of the other’s behavior (and thus, fail the ToM test, see below), but still adopt 

the intentional stance to the agent in general.  

 Now, imagine that you are asking a humanoid robot for directions at the counter of a train 

station. You are interested in knowing about restaurants nearby, and the robot manages to answer 

your questions. After an effortless dialogue, the robot says: “I will give you a map,” turns around, 

and looks for something inside a shelf. All of a sudden, the robot stops every movement, turns back 

toward you, and says: “Good morning, how can I help you?” How would you explain this behavior 

to someone else? You would probably describe it in terms of the robot’s presumed internal states 

and say something like: “The robot forgot that I was there waiting for the map.” Most people facing 

a situation like this would also use mentalistic terms to describe the behavior of the robot. In fact, it 

is very intuitive for humans to attribute human intentions, preferences, capacities, and emotions to 

non-human agents and interact as if those agents would actually have a mind. However, it might be 

that attributions or more cognitive states, such as thoughts or intentions, are more likely than 

attributions of more phenomenal or affective states, such as pain or happiness [Huebner 2010]. 

The tendency to attribute mental states to non-human agents is a part of the process called 

anthropomorphism. When an entity is anthropomorphized, its behavior, as well as inferences 

drawn from it, is interpreted in human-centric terms [Epley 2008]. If paper constantly jams in a 
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printer, for instance, an anthropomorphic interpretation would say that “the printer refuses to 

work,” or even say “that stubborn printer.” A technical or more detailed explanation of the same 

behavior could feel artificial and be more complex, preventing effective communication. Humans 

have extensive experience understanding other humans’ minds, which is probably why mentalistic 

explanations for the behavior of non-human entities often seem intuitive. Note, however, that 

typically people do not believe that cars or other complex non-human systems have internal mental 

states, but that they often explain behavior and natural phenomena within their “mentalistic 

comfort zone.” In summary, humans have the tendency to interact with non-human agents as if 

they had mental states. This ability facilitates prediction, understanding, and interaction with 

social counterparts.  

2.1.1 Developing a Theory of Mind  
 From very early stages of development, we learn to read others’ minds. This capability is 

critical for cognitive development: it provides foundations for language acquisition, allows 

differentiating between self and others, and is crucial for social interactions. Interestingly, 

representing the mental states of others occurs effortlessly, automatically, and unconsciously, 

which explains why others’ behavior is often intuitively explained in mentalistic terms although it 

is questionable (as in the case of mindless artificial systems, such as a printer or car). In the past 

century, several disciplines have extensively studied the effects and origins of human ToM. Initial 

cognitive approaches by Heider [1958], for instance, suggested that people have a general 

understanding of others’ ideas and actions in particular situations—a “commonsense or folk 

psychology” that helps them deal effectively with social situations. This ability is firmly anchored 

on the assumption that beliefs and intentions play an active role in others’ behavior, together with 

subjective experiences and perceptions of the environment. Such inferences transcend the 

observed behavior and prove to be useful in predicting and understanding others’ actions. 

Subsequently, Premack and Woodruff [1978] defined ToM as the ability to reason about other’s 

behavior and mental states, based on observations during experiments with chimpanzees.  
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2.1.2 Tasks Used to Assess Theory of Mind Capabilities during 
Development  
 Various tasks have been traditionally used to measure the ToM capabilities in development, 

focusing on different aspects of the process: some tasks have been created to evaluate the 

capabilities of the participants to infer others’ mental states (i.e., mentalizing). In such tasks, 

participants are usually exposed to descriptions of social situations and are asked to predict the 

mental states of the characters involved. Examples for this category are the false belief task 

[Wimmer and Perner 1983] or the strange stories task [Happé 1994]. The level of difficulty of these 

tasks depends on the target population, that is: more complex versions of these tasks exist for 

adults versus children; cognitive demands, culture, education, and language skills may also affect 

the test results. For instance, on the Sally–Anne false-belief task [Wimmer and Perner 1983], one 

of the most widely used task to evaluate ToM, kids are told a story in which a character, Sally, puts 

an object inside a basket before leaving the room. Once Sally is out of the room, another character, 

Anne, changes the location of the object to a box. At this point, the children are asked where Sally 

would look for the object upon her return. Initial findings revealed that four-year-olds can compute 

the perspective or state of (false) beliefs of others, revealing that ToM abilities have developed.  

 Another group of tests evaluates the capability to detect and interpret social signals, as they 

are pivotal in mindreading. Gaze following [Bayliss et al. 2007, Frischen et al. 2007] or 

identification of emotions from visual [e.g., Baron-Cohen et al. 1995, De Sonneville et al. 2002, 

Bayliss and Tipper 2006] or auditory stimuli [Nowicki and Carton 1993, Scherer and Scherer 2011] 

are examples for this category. Similarly, tests like Reading the Mind in Eyes [Baron-Cohen et al. 

1997] or Reading the Mind in Film [Golan et al. 2006] measure whether participants can accurately 

identify internal states from social signals. While these traditional tasks offer highly controlled 

measures of participants’ ToM abilities, they lack ecological validity. One major challenge with 

these paradigms is that the evaluation of ToM is based on experimental protocols with spectatorial 

perspective, meaning that participants are placed in the role of a passive observer rather than 

partaking in a dynamic social interaction. Furthermore, the evaluation of ToM in those paradigms 

takes place in non-social contexts, potentially delivering a biased assessment of social cognition 

compared to real-life situations. More recent approaches, such as the second-person neuroscience 
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framework [Schilbach et al. 2013], stress the importance of allowing natural, reciprocal 

interactions in experimental paradigms when trying to understand the mechanisms of social 

cognition. Evidence from clinical studies supports the postulates of second-person neuroscience 

framework showing that although children with an autism spectrum condition are capable of 

passing the traditional lab-based false-belief tasks at a mental age of six years [Happé and Frith 

2014], adolescents and adults with Asperger syndrome still have difficulties in mentalizing with 

others during naturalistic interactions [Ponnet et al. 2004].  

2.1.3 Neural Correlates of Theory of Mind  
 Recent studies have revealed two main brain regions (see Figure 1) involved in ToM: the 

paracingulate cortex, involved in processing of own and others’ mental states, and the 

temporoparietal junction, linked to identifying actions and intentions produced by biological 

agents. The wider network of brain areas involved in ToM tasks includes the dorsomedial 

prefrontal cortex, temporal-parietal junction, superior temporal sulcus, ventromedial prefrontal 

cortex, and posterior cingulate cortex [Amodio and Frith 2006, Frith and Frith 2006, Blakemore 

2008, Van Overwalle and Baetens 2009]. These areas have been reported to be activated during 

various mentalizing tasks, such as making inferences about others’ preferences [Mitchell et al. 

2002, Jenkins et al. 2008], reading stories about others’ mental states [Saxe and Kanwisher 2003], 

interactive games that require reasoning about intentions [Hampton et al. 2008, Chang et al. 2011, 

Sul et al. 2017], or watching movies that require inferring characters’ mental states [Pantelis et al. 

2015, Richardson et al. 2018].  

2.2 Joint Attention  

 Cognitive science has also extensively investigated the phenomenon of JA, which is closely 

related to-, and a precursor of, ToM. JA takes place when two individuals coordinate their 

attentional processes to conjointly attend to the same object or situation in the environment. JA is 

fundamental for the acquisition of language, such that the caregiver says a word for a given object 

out loud and uses her/his gaze to guide the child’s attention to the object in the environment, 

establishing an association between the spoken word and the object it represents [Baron-Cohen 

1997]. JA is a pivotal precursor of joint action and mental state attribution as they are used to 
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communicate a partner’s focus of attention and allow inferences about his/her intentions (e.g., 

looking at a food item might mean that the gazer is hungry) and action goals (e.g., looking at a 

coffee cup might predict an upcoming grasping action).  

2.2.1 Tasks for Measuring JA Capabilities  

 To examine attentional processes underlying JA, the gaze-cueing paradigm has been used 

extensively, where participants observe a centrally presented face on the screen that first looks at 

them and then changes its gaze direction to the left or right side of the screen to either validly or 

invalidly cue a subsequent target probe [Friesen and Kingstone 1998, Driver et al. 1999, Emery 

2000, Frischen et al. 2007]. The standard observation is that targets appearing at the gazed-at 

(validly cued trials) location are processed faster and more accurately than targets appearing 

elsewhere (invalidly cued trials), which results in faster response times to targets located at the 

gazed-cued relative to other locations, where the difference in reaction times across these two 

conditions is termed the gaze-cueing effect. The gaze-cueing effect is explained as the consequence 

of enhanced attentional orienting in response to the change in gaze direction that functions as a 

spatial cue: when the gaze is directed to a location, the observer’s attentional focus is shifted there, 

and this facilitates the sensory processing of stimuli that subsequently appear at the attended 

location. On the other hand, when a stimulus appears in an uncued location, the observer’s 

attentional focus first needs to be shifted from the cued location to the target location; this 

additional time for shifting the attentional focus to the target is reflected in reaction times.  

 Although it has been argued that attention is reflexively oriented by social stimuli, such as 

changes in gaze direction (see Friesen and Kingstone [1998]), multiple studies (i.e., Wiese et al. 

[2014] and Kuhn et al. [2018]) have shown that attentional orienting to gaze cues can be top–down 

controlled when the context in which the interaction takes place is sufficiently social and provides 

information about the social relevance of the cue [Wiese et al. 2013]. For example, attentional 

orienting to gaze cues is enhanced when they are believed to be intentional as opposed to random 

or unpredictable [Teufel et al. 2010, Wiese et al. 2012, 2014, Perez-Osorio et al. 2015, Perez-Osorio 

et al. 2017; see Capozzi and Ristic 2020, for a review].  
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2.2.2 Neural Correlates of JA  

Several specialized cerebral mechanisms have been postulated as the basis of socio-cognitive 

mechanisms related to gaze processing and gaze-induced JA. Neuroimaging studies in humans 

show that the superior temporal sulcus region is implicated in processing various face signals, such 

as changes in gaze direction or facial expression [Puce et al. 1998, Hooker et al. 2003, Pelphrey et 

al. 2003, see Allison et al. 2000, for a review]. The intraparietal sulcus (IPS), which generally is 

activated during covert shifts of attention [Nobre et al. 1997, Corbetta, 1998], is also involved in JA, 

specifically in shifting the observer’s attention to the gazed-at location [Puce et al. 1998, Wicker et 

al. 1998, Hoffman and Haxby 2000, George et al. 2001, Hooker et al. 2003, Pelphrey et al. 2003]. 

In support of this notion, a functional magnetic resonance imaging study by Hoffmann and Haxby 

[2000] reported that passive viewing of faces that showed averted gaze elicited a significantly more 

robust response in bilateral IPS and left superior temporal sulcus than the passive viewing of faces 

with direct gaze, indicating that these brain areas are specialized in processing averted gaze. 

Further, Puce and colleagues [1998] showed that the inferior temporal sulcus is particularly 

sensitive to eye movements. Hence, inferior temporal sulcus and superior temporal sulcus seem to 

be specialized in processing gaze direction, while IPS may be preferentially involved in attentional 

orienting in response to gaze cues.  

3. Theory of Mind in Artificial Agents 

3.1 Evoking Human Social Cognition Mechanisms during HRI  

3.1.1 Theory of Mind in HRI  

 Implementation of social cognition in SIA can be characterized by simulation of social 

interactions. This approach relies on scripted social behavior, usually created based on human-like 

behavior, to endow artificial agents with social signals, actions, and language. Through the 

combination of pre-scripted behavior, depending on the experimental conditions exhibited during 

social interactions or through experimenter-controlled protocols referred as Wizard-of-Oz studies 

[Dahlbäck et al. 1993], social behavior of artificial agents become dynamic and interactive within 
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well-defined experimental scenarios. Multiple studies have shown that simulating social 

interactions with SRs can trigger ToM-related processes in HRI [Hegel et al. 2008, Byom and 

Mutlu 2013, De Graaf and Malle 2019]. Manipulating beliefs about an agent’s capacity of having 

internal states or exploring the effects of communicative gestures in cooperative or competitive 

interactions, for instance, have been used to understand whether and under which conditions 

people mentalize with artificial agents. These studies help understand whether people would 

spontaneously adopt a mentalistic approach to artificial agents and what factors contribute to the 

likelihood of attributing mental states to SIA.  

 Many studies have examined to what extent humans interpret social signals displayed by 

SR in mentalistic terms and whether they are used to infer a robot’s mental state. As an example, 

Mutlu and colleagues [2009] investigated whether non-verbal cues during an interactive game 

would elicit ToM inferences in participants, leading them to follow the cues of the SR. In this 

experiment, the participants’ task was to guess which object the robot had chosen from objects 

depicted on top of a table. The results showed that participants were faster and more accurate 

when the robot used non-verbal social cues relative to no social cues. Interestingly, when asked 

afterwards, most of the participants did not explicitly pay attention to the cues or actively use them 

to complete the task. Other interactive protocols showed that humans tend to take into account the 

behavior and, arguably, internal states of SR when trying to coordinate or synchronize their actions 

with them during joint task execution [Xu et al. 2016, Ciardo et al. 2020].  

 Schreck et al. [2019], for instance, evaluated whether a SR’s social behavior, the type of 

social signals it displayed, and the proxemics (how close would the SR get to people) affected the 

likelihood of ToM-related interpretations. They found that increased experience with a robot 

through continued interaction decreased the likelihood of mental state attributions, unless the 

robot showed more socially active behaviors (get close to people when interacting) as well as more 

human-like expressions, which triggered stable levels of mental state attributions across the 

experiment.  

 Instead of looking at the effect of social signals on mentalizing, more recent approaches ask 

a broader question, namely which physical and behavioral features SRs need to display in order to 

being perceived as an entity “with a mind,” capable of displaying internal states [Epley et al. 2007, 
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Gray et al. 2007, Złotowski et al. 2015]. When non-human agents are treated as agents with a mind, 

humans adopt the intentional stance [Dennett 1987] to them and interpret their behavior based on 

the assumption that it is motivated by internal states such as beliefs, desires, or intentions. Given 

the general capacity of SIAs to display physical and behavioral signs of human-likeness, and the 

human tendency to anthropomorphize non-human entities, it plausible to assume that humans 

would use mentalistic strategies to explain and predict the behaviors of artificial agents [Perez-

Osorio and Wykowska 2019, for review]. While this assumption is theoretically plausible, empirical 

evidence is mixed. The seminal study by Gallagher and colleagues [2002] observed differential 

activation in the anterior cingulate cortex, previously linked with mentalizing tasks, when 

participants believed that they were playing rock-paper-scissors against a human compared to 

playing against a rule solving program or a random response generator. Importantly, all the 

conditions were controlled by the same algorithm and the only difference between them was the 

stance of the participants toward the opponent. However, Chaminade et al. [2012] used a similar 

paradigm and replaced the rule solving opponent with a humanoid robot and reported no 

differences in brain activation between humanoid robot and the random responses. Furthermore, 

Krach and colleagues [2008] who used the Prisoner’s dilemma instead of rock-paper-scissors and 

found that the medial prefrontal and left temporo-parietal junction, associated with the attribution 

of intentional stance and part of the ToM network, were only activated in response to humans but 

not during the interaction with artificial agents (a humanoid robot, a functional robot without 

human-like appearance, and a computer). More recent evidence suggests that in addition to belief 

manipulations, other cues that manipulate social context information also have the potential to 

trigger participants to adopt the intentional stance toward SIA. For example, a recent study 

manipulating the intentional stance by presenting human and SR agents embedded in different 

scenes, and asking participants to score the plausibility of different explanations for the agents’ 

behaviors, shows no difference in participants’ tendencies to adopt mentalistic explanations toward 

human versus SRs [Thellman et al. 2017]. In a similar study, Marchesi et al. [2018] also showed 

that people spontaneously adopt the intentional stance toward humanoid robots under some 

contexts using a novel questionnaire, the Instance Questionnaire (ISQ), that was specifically 

developed to measure peoples’ tendencies to adopt the intentional stance toward a robot 
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[specifically, the humanoid robot iCub, Metta et al. 2010]. In the questionnaire, participants 

observe a series of pictures showing a sequence of events involving iCub and are then asked to 

judge whether its behavior was motivated by a mechanical (e.g., malfunction, calibration) or 

mentalistic reason (e.g., desire, curiosity), with the latter explanation indicating adoption of the 

intentional stance, see Figure 2. Results showed that although participants tended to give more 

often mechanistic explanations for iCub’s behaviors, some behaviors evoked mentalistic 

interpretations. Interestingly, inter-individual might have also played a role in likelihood of 

adopting the intentional stance toward the robot.  

Figure 2. Examples of scenarios from the Instance Questionnaire. Under each scenario 
participants chose the explanation that would better describe the behavior of the robot, either a mentalistic 
or mechanistic statement. For example, in Panel A the options were “iCub was trying to cheat by looking at 
opponent’s cards” for mentalistic description, and “iCub was unbalanced for a moment” for mechanistic 
description. Copyright © 2019 Marchesi, Ghiglino, Ciardo, Perez-Osorio, Baykara and Wykowska, Istituto 
Italiano di Tecnologia (CC BY 4.0). 

 Another crucial factor that has been hypothesized to influence adopting the intentional 

stance and that can be directly influenced via robotic design is whether the behavior of a robot 

seems human-like [Złotowski et al. 2015]. Wykowska et al. [2015], for instance, showed that 

variable temporal characteristics of gaze behavior lead participants to judge a robot’s behavior as 

more human-like compared with less variable eye movements. Willemse et al. [2018] also reported 
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that participants anthropomorphized and liked robots more that followed the participants’ gaze 

during an interactive experiment that exhibited typical human-like reciprocity  

 Perez-Osorio et al. [2019] further showed that when participants had high expectations 

regarding the behavior of the robot, their scores in the ISQ increased after a brief observation of the 

robot; for participants with lower expectations ISQ scores decreased after the observation. 

Collectively, evidence suggests that people can (and do sometimes) attribute mental states to SRs 

and employ these attributions during social interactions. Human-like shape and behavior might 

facilitate the attribution of mental states to robots but might not be sufficient; rather, the type of 

interaction and the social signals exhibited play a crucial role on this process, as well as individual 

attitudes [De Graaf et al. 2016] and imageries of robots [De Graaf and Malle 2019].  

3.1.2 Joint Attention in HRI  

 Several studies have examined JA in HAI, and have shown that people can identify and 

follow non-human gaze and discriminate whether the SR is looking at them or at a different 

location (see Admoni and Scasselatti [2017] for a review). Findings also suggest that robot gaze can 

be used to communicate information about relevant events and targets in the world—similar to 

human gaze. Although some studies have shown that the directional gaze of two different robots 

failed to elicit reflexive attentional orienting (i.e., Admoni et al. [2011] and Okumura et al. [2013]), 

several other studies have consistently shown engagement in JA with artificial agents. This occurs 

in screen-based studies [Wiese et al. 2012, 2019], but also when using embodied humanoid agents 

in interactive protocols [Wykowska et al. 2015, Kompatsiari et al. 2018, Chevalier et al. 2019 for 

review]. Various experimental conditions can modulate certain aspects of social attention, which, 

in consequence, results in variable empirical findings that can vary depending on which paradigm 

has been used and how it has been implemented. For instance, the robot’s believed intentionality 

appear to modulate gaze effectiveness in orienting attention (i.e., the extent to which gaze orients 

attention) [Wiese et al. 2012, Wykowska et al. 2014]. Participants also respond more favorably to 

robots that display socially engaging gaze, for example, in the series of studies by Kompatsiari and 

colleagues [2017], gaze cueing effects were modulated by whether the robot engaged or not in 

mutual gaze with the participants prior to directing their attention to one of the locations where the 

target could appear (the gaze cueing procedure). Willemse et al. [2018] as well as Willemse and 

Page  of 14 38



PR
EP
RI
NT

Accepted preprint Chapter 9 -  Theory of Mind and Joint Attention  

Wykowska [2019] showed that degree of contingency of the robot’s gaze on participants’ gaze 

direction also influenced JA. Finally, Perez-Osorio et al. [2018] showed that action expectations 

also affect the magnitude of the gaze cueing effect. Huang and Mutlu [2012] also found that 

participants recalled the details of a story better when the SR used congruent speech and gaze cues 

than when the cues were spatially or temporally incongruent. Similarly, Mutlu et al. [2013] found 

that participants responded faster and understood instructions better when the SR used verbal and 

visual cues. These findings indicate that humans can engage in JA with artificial agents such as 

robots and that non-verbal social cues can be beneficial for human–robot interaction.  

4. Modeling Social Cognition  
4.1 Implementing Theory of Mind in SR  

 Considering the strong bias that humans have to interpret others’ behaviors in 

anthropomorphic or mentalistic terms, it is natural to assume that in social interactions with 

artificial agents people would employ the same social-cognitive mechanisms as in interactions with 

humans. Roboticists might have followed a similar intuition when deciding how to best design SRs: 

they aim to create robots that can communicate using human-like social signals and to equip 

robots with social skills and cognitive capabilities comparable to humans in order to facilitate social 

interactions. For example, Scassellati [2002] suggested that endowing a robot with ToM would be 

very beneficial for social interactions as robots could use such a model not only to understand 

human behavior and communicate efficiently with humans, but also to learn from social 

interactions the same way that infants learn from their parents. Endowing a SR with ToM would 

not only allow robots to generate internal representations of humans’ mental states, and to 

appropriately respond to these mental states, but it would also help robots to interact smoothly and 

fluently with humans. For that purpose, Scassellati extracted the most relevant aspects of 

traditional psychological models of ToM from developmental cognitive science [e.g., Baron-Cohen 

1995, see Figure 3], and aimed to create analogous structures in artificial robot systems. 
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Figure 3. Theory of mind model based on Baron-Cohen [1995]. Detection of stimuli in the 
Intentional Detector (ID) module and the Eye Direction Detector (EDD) module constitute the basic input 
for the model. Representations created in this first layer feed the Shared Attention Mechanism (SAM) to 
build triadic representations. In the final layer, the Theory of Mind Mechanism encodes and stores 
representations to create a theory about others’ mental states and beliefs. The levels increase in complexity 
and mature sequentially during development (based on Baron-Cohen [1995]).  

 The ToM formulated by Baron-Cohen [1995] proposes that humans develop a mindreading 

system consisting of four different modules: intentionality detector (ID), eye direction detector 

(EDD), shared attention mechanism (SAM), and theory of mind mechanism (ToMM). The ID 

recognizes entities in the environment that exhibit biological motion and is able to detect self-

propelled motion and goal-oriented behaviors and thus can identify an organism with volition or 

agency [Premack 1990]. The EDD automatically detects the presence of eyes/face in the visual field 

and decides whether eye-like stimuli are “looking at me” or “looking at something else” and thus 

whether an agent shows mutual gaze (signaling readiness to engage) or averted gaze (trying to shift 

observer’s attention to potential objects of interest). ID and EDD become functional earlier in 

development and precede the maturation of SAM and ToMM. SAM receives input from both ID 

and EDD to determine whether two biological interaction partners conjointly attend to the same 

event or object in the environment, thus creating a triadic representation (self, other, object) out of 
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different dyadic representations (self/other, self/object, other/object). SAM usually develops at 9 

to 14 months of age and allows JA behaviors, such as proto-declarative pointing and gaze 

monitoring. Importantly, SAM allows the agent to interpret the gaze change of others as intentional 

and, what follows, as intentional representations (i.e., “she wants to...”), which highlights the 

importance of gaze perception for the successful inference of others’ mental states.  

 The most advanced module, the ToMM, enables representing and integrating the full set of 

mental state concepts into a “theory”; it creates representations of others’ beliefs and desires but 

also allows for formulating knowledge states that are neither necessarily true nor match the 

knowledge of the agent (i.e., imagination and creativity). ToMM forms later in development 

(between 2 and 4 years of age) and allows pretend-play [Leslie 1987] as well as understanding false 

beliefs [Wimmer and Perner 1983] and the relationship between mental states [Wellman 1990]. 

Baron-Cohen’s model has proven to be useful in interpreting typical and atypical development of 

social skills in humans, autism spectrum condition in particular. An important part of this model is 

that it is hierarchical with representations of different levels of complexity, starting with precursor 

functions like the detection of biological agents (ID) and gaze signals (EDD), continuing to the 

maturation of shared attention (SAM), and finally the successful representation and inference of 

others’ mental states (ToMM).  

 In the process of implementing a ToM model in artificial agents, Scassellati first introduced 

the EDD and ID modules and over the years additional modules have been proposed: modules to 

distinguish animate from inanimate motion [Scassellati 2001], to share attention [Nagai et al. 

2002, Scassellati 2002], to imitate actions as a method for learning motor skills and recognizing 

human actions [e.g., Schaal 1997, Demiris and Hayes 2002, Fod et al. 2002, Billard et al. 2004, 

Breazeal et al. 2005, Gray et al. 2005, Johnson and Demiris 2005], and to take others’ perspective 

[Gray et al. 2005, Trafton et al. 2005, 2006]. The main challenge consists, however, in generating 

and integrating different motor and social skills into an articulated architecture able to cope with 

the changing environmental demands and able to adapt to multiple and variable social contexts.  

 Since this early work, the implementation of ToM models in socially interactive agents has 

progressed considerably. Most recent advancements (for a review, see Bianco and Ognibene 

[2019]) have resulted in the formulation of more complex cognitive architectures that aim at 
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providing social skills to SIA. In recent years, computational models of social cognition have been 

used to understand cognitive mechanisms of ToM by simulating functioning ToM [Newell 1994, 

O’Reilly et al. 2012]. These models of ToM vary in their characteristics but typically highlight the 

importance of detecting social signals conveyed by others (with most of these signals being 

conveyed by eyes and faces), identification of goals and motivations (i.e., task-related goals), and 

creation of beliefs (based on state of the world and the estimation of others’ knowledge). For 

example, Baker et al. [2009] propose a Bayesian theory of mind (BToM), a model that formalizes 

action understanding as a Bayesian inference problem. This approach models beliefs, goals, and 

desires as rational probabilistic planning in Markov decision problems (MDPs) and the goal 

inference is performed by the Bayesian inversion of this model of planning. The MDPs are a 

normative framework for modeling sequential decision-making processes under uncertainty, 

commonly used for human planning and reinforced learning [Dayan and Daw 2008]. MDPs allow 

creating representations of an agent’s interaction within the environment and encode all relevant 

information about the configuration of the world and the agent as state variable, which allows 

capturing mental models of intentional agents’ goal and environment-based planning. Further, 

MDPs represent actions permitted in the environment and determine a causal model of 

implications of these actions in the state of the world; they also represent subjective rewards or 

costs caused by the agent’s actions in each state.  

 The model creates an agent’s hypothetical representations of beliefs and desires that caused 

a behavior within that given environment using Bayesian inference; all hypotheses are associated 

with a particular goal. For each hypothesis, the model evaluates the likelihood of generating the 

observed behavior given the hypothesized belief or desire. Then, the model integrates this 

likelihood with the prior over mental states to infer the agent’s joint belief and desire [Baker et al. 

2009, 2017]. Although the model integrates beliefs, desires, and goals, it depends strongly on 

priors regarding the action goals (in contrast with other models of ToM). Importantly, and unlike 

other models of ToM, BToM performs Bayesian inferences over beliefs and desires simultaneously.  

The cognitive model incorporates the current perceptual states and beliefs’ updates in order to 

modify the initial hypothesis and then generates new adjusted predictions in each iteration.  
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 To evaluate the model, the authors tested whether the model is able to predict the mental 

states of an agent performing a decision-making task (i.e., choose a food truck) displayed in three 

action frames and then contrasted these predictions with both human and alternative models’ 

performance on the same task. On each trial, an agent was looking for a food truck in three frames, 

starting point, transition, and goal, in different spatial configurations (layouts). After each trial, 

participants (and models) were asked to predict the agent’s preferences regarding the food trucks 

and to rate how confident they were with their assessment. The authors contrasted the predictions 

of the BToM model with humans’ performance and assessments and against two model 

alternatives—TrueBelief (a special case of BToM with a prior that assigns probability 1 to the true 

world state) and NoCost (another special case of BToM that tests the contribution of the principle 

of efficiency to ToM reasoning by assuming that the agent’s cost of action is zero), as well as one 

cue-based alternative—Motion Heuristic (which tests whether social inferences are derived from 

processing of bottom-up perceptual features). They found that the proposed model successfully 

predicts the mental states of an agent and generates mental-state judgments similar to those of 

human participants in a wide variety of environment configurations. These findings obtained with 

Bayesian inversion of models of rational agents suggest that the brain might use similar principles 

to handle social information, infers others’ mental states, and predicts their actions. Thus, Bayesian 

computational models offer a powerful tool to evaluate the inherent predictive functioning of the 

brain.  

 Cangelosi and colleagues have also been developing cognitive architectures incorporating 

ToM (e.g., Vinanzi et al. [2019]). The authors designed and implemented a biologically inspired 

artificial cognitive system that incorporates trust and ToM, which is supported by an episodic 

memory system and based on developmental robotics. The cognitive system integrates multimodal 

perception (visual and auditory stimuli) together with a motor module. The visual module detects 

and recognizes faces through machine learning algorithms Haar Cascade [Viola and Jones 2001] 

and Local Binary Pattern Histogram [Ojala et al. 2002]. This cognitive system also has a belief 

module based on Bayesian belief networks. Representations are stored in the episodic memory 

module to be retrieved and included in future interactions with new users. Interestingly, the 

architecture was tested using an experimental paradigm from developmental psychology. The 
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paradigm has been developed to evaluate how much children trust an interaction partner 

[Vanderbilt et al. 2011]. Only children 5 years of age and older are typically able to pass this test, 

thanks to the emergence of the ToM. To pass the test, children need to differentiate people who 

give useful cues (helpers) from people who are lying (trickers). Interestingly, the proposed 

architecture satisfactorily identified helpers from trickers, thereby passing the test.  

 The creation of neurocognitive models of ToM mechanisms with computational simulations 

and architectures and the further observation of the effects of these models in interactive situations 

has two main advantages. As mentioned above, the implementation of ToM models in SIA would 

facilitate interaction with humans, as the models anchor the agents’ behavior in predictive 

identification of action and proactive generation of responses. Furthermore, implementation of 

such models in SIA also provides a new tool for understanding the ToM mechanisms in humans 

during social interactions.  

 Finally, some cognitive architectures, like the work proposed by Rabinowitz et al. [2018], 

use ToM neural networks to infer mental states online based on a meta-learning approach. The 

application of strong prior results in inferences that require only a few observations, adapting 

quickly to different tasks and behaviors, which brings the architecture closer to human 

performance. It is important to mention that although this neural network receives only visual 

inputs, it can solve false belief tasks. Another notable example of biologically inspired architectures 

is the work of Kahl and Kopp [2018, 2019]. The authors propose a mentalizing system for 

attributing and inferring mental states together with a hierarchical predictive model for online 

action perception and production that represents the mirror system. While the mentalizing 

subsystem allows differentiating mental perspectives for “me,” “you,” and “us,” the mirror 

subsystem adopts the Empirical Bayesian Belief Update model [Sadeghipour and Kopp 2011] for 

action observation and production. The architecture allows second-order ToM, that is, 

representations of beliefs about beliefs, in actual simulations of dynamic interaction.  
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4.2 Simulating Other Social Cognition Mechanisms that 

Support Theory of Mind in Artificial Agents  
 Simulation of higher-order socio-cognitive capabilities includes action recognition, 

imitation, memory, and learning. All these modules contribute to model a functional ToM. The 

model can create, store, retrieve, and track the counterpart’s mental states and compare them with 

its own internal states online. This type of simulation allows making inferences about goals, predict 

actions, and also facilitates learning [Byom and Mutlu 2013]. Furthermore, these cognitive 

simulations allow (i) making inferences about the perspective of humans [Trafton et al. 2005] and 

(ii) distinguishing and storing particular sets of beliefs to help robots plan actions and to learn 

based on imitation [Breazeal et al. 2006] or activate motor-resonance mechanisms that facilitate 

generation of inferences about subsequent steps of actions sequences [Blakemore and Decety 

2001]. Another example of cognitive simulation in the motor domain is a system developed by Gray 

et al. [2005] that monitors the human behavior in a collaborative task by simulating the observed 

behavior within the robot’s own generative mechanisms. This enables the robot to perform task-

level simulations, track the participant’s progress, and anticipate the needs to accomplish the 

action goal.  

 A considerable part of the initial work on ToM in robotics was focused on implementing the 

visual perspective-taking mechanism and the so-called “belief management system” in the SR in 

order to infer the humans’ mental states (i.e., Scassellati [2002] and Berlin et al. [2006]). A 

prominent example of the integration of these modules was presented by Breazeal et al. [2009]. 

The authors aimed at incorporating mechanisms based on the simulation theory as a principle to 

support mind-reading skills and abilities. The proposed model is characterized by two modes of 

operation: one, which generates the mental states of the SR using the current state of the world, 

and a second one, which constructs and represents the mental states of the human counterpart. 

Importantly, both modes share the perception, belief, motor, intention, and body representation 

modules. The perception system can estimate what the other can see and transforms that 

information into the point of view of the robot. The motor system maps and represents the body 

positions of the human in terms of the SR joint space to perform action recognition. The belief 
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system combined with perspective taking represents possible beliefs of the human. Finally, the 

intention system predicts the ideal action sequence to achieve a goal.  

 This information is combined with the perceptual cues and the current state of the 

environment to create inferences about mental states and to predict the actions of the human 

counterpart. According to the authors, the system to represent the human’s mental states builds 

beliefs based on perceptual states using an embodied simulation together with higher-level 

knowledge about task-goals [Breazeal et al. 2009]. Their architecture was tested in a collaborative 

task and a learning-from-demonstration task. The SR was able to anticipate and generate 

inferences about human behavior and pointing at relevant objects during the collaborative task. It 

was also capable of recognizing rules demonstrated by the teacher in the learning task. The 

physical limitations of the SR platform (i.e., the social robot Leonardo) prevented physical 

interaction with the environment. For that reason, the capabilities of the architecture were tested 

also in a virtual reality environment showing successful results. The authors concluded that the 

system can infer and predict the beliefs of the interaction partner, although the range of these 

beliefs was limited compared to the capabilities of humans.  

 More recent cognitive architectures attempt to develop more flexible artificial ToM systems 

to enhance robots’ capabilities to improve human–robot interactions, allowing SRs to take others’ 

perspectives, generate predictive actions, support active perception, and reduce the dependence on 

external datasets to infer actions and mental states [Bianco and Ognibene 2019]. There are several 

types of cognitive architectures. For instance, multimodal architectures rely on collecting inputs 

from different modalities (i.e., visual, auditory, and proprioception) to predict and understand the 

behavior of the human and to reproduce movements. Inputs that include posture, location, facial 

expressions, visual perspective, and movements of the human can be used to determine whether 

the actions are intended or not. This inputs are also integrated with verbal commands and 

proprioceptive information to perform collaborative tasks like cleaning a table in the most efficient 

manner. The biomimetic architecture for situated social intelligence systems (BASSIS) proposed by 

Petit and colleagues [2013] provides a robot real-time adaptation during collaborative scenarios 

using multimodal inputs (visual, verbal, and proprioceptive) to infer the mental states of the 

human counterpart. This architecture is organized at three different levels of control: reactive, 
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adaptive, and contextual, which are all based on the physical instantiation of the agent through its 

body. It is based on the Distributed Adaptive Control Architecture [Verschure et al. 2003] and was 

employed for multimodal learning with NAO and iCub platforms. It has shown great potential for 

collaborative environments. However, it is limited by the quality of teaching (as it does not tolerate 

errors from the tutor) and by limited long-term storing of the acquired learning [Verschure et al. 

2003].  

 Another architecture that uses multimodal estimations was proposed by Görür et al. [2017]. 

In contrast with BASSIS, it integrates a ToM model into decision-making tasks. This architecture is 

composed of three modules: Sensing, Action State Estimation (ASE), and the Human–Robot 

Shared Planner (HRSP). The architecture receives primarily sensory data (visual and auditory/

verbal) and generates stochastic policies in the form of human–robot shared decisions from the 

robot’s point of view. A combination of sensory data and generated policies produces an input that 

drives the remainder of the architecture. The ASE and the HRSP constitute the ToM part, but they 

rely closely on the Sensing module. The stochastic planner of the HRSP depends on partially 

observable Markov decision process (POMDP), which is a Bayesian ToM model inspired by Baker 

and Tenenbaum [2014]. Similarly, Devin and Alami [2016] designed a model that employs multiple 

inputs to estimate and maintain representations about the environment and the actions goals of 

the partner. It includes representations of the previous goal, plans, and actions, and holds them 

online to decrease unnecessary or redundant verbal communication with the human counterpart.  

A variation of Devin and Alami’s architecture [2016] has been proposed by Demiris and Khadhouri 

[2006], called HAMMER (Hierarchical Attentive Multiple Models for Execution and Recognition). 

This architecture is an example of multimodal estimation and hypothesis simulation. It has been 

designed to identify and execute goal-oriented actions and has an inverse model paired with a 

forward model. The inverse model processes the current state of the system and the target goal(s) 

and produces the control commands that are needed to achieve or maintain those goal(s); the 

forward model takes the current state of the system as input and a control command to be applied 

on it and outputs the predicted next state of the controlled system. This architecture is based on the 

visual perception of another agent’s movements, which is controlled by top–down signals to orient 

the robot’s attention toward information necessary to confirm its hypothesis concerning the 
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demonstrator’s action. This architecture was implemented and tested on a robot that conducted an 

action recognition task while observing a human demonstrator performing an object-oriented 

action. The robot successfully performed the task and the attentional mechanism acting over the 

inverse model was suggested to reduce robots’ computational costs.  

5. Comparison of IVAs and SRs  

 The physical embodiment of interaction partners is known to impact social interactions (see 

Li [2015], for review). However, there is no consensus regarding the question whether artificial 

agents’ embodiment has an effect on ToM and JA specifically. Users typically find physically 

embodied SRs more engaging, enjoyable, informative, and credible [Kidd and Breazeal 2004] than 

virtual agents. Physically co-present embodied systems improve interactions over virtual systems 

[Bainbridge et al. 2011]. In general, a wide variety of studies in HRI support the idea that 

implementing human-like characteristics in SRs facilitates social interaction. However, there is 

sparse literature that supports a systematic comparison of the SRs and IVAs. Studies showed that 

SRs with human-like appearance and behavior are judged as more pleasant [Axelrod and Hone 

2005], more usable [Riek et al. 2009], more accepted [Venkatesh and Davis 2000, Kiesler and 

Goetz 2002, Duffy 2003], easier to get acquainted with [Krach et al. 2008], and more engaging 

[Bartneck and Forlizzi 2004]. Further, SRs that communicate using social signals, such as facial 

expressions [Eyssel et al. 2010], other emotion displays, like ear or fin movements in human-like 

robots, [Gonsior et al. 2011], or turn-taking in conversations [Fussell et al. 2008] evoke stronger 

emotional responses and are preferred by users over SRs that do not show social signals. IVAs with 

these or similar characteristics would also be expected to facilitate the attribution of mental 

capacities to them, and studies indeed suggest that people can read intentions into IVAs’ behaviors 

during social interactions. For instance, using the principles of animation, Takayama et al. [2011] 

designed the behavior of an IVA such that it either displayed intentions (i.e., hint with the gaze 

whether it is aiming at opening a door) or not, and was reactive (or not) to the events in the 

environment during action execution. They found that when an IVA showed forethought (time to 

“think”) before executing an action, the outcome was judged as more competent and intelligent, 
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and the agent was perceived as more appealing. This suggests that people are sensitive to the 

intentional hints from IVAs and can interpret them accordingly.  

 Several studies have focused on whether virtual agents can communicate using the gaze and 

engage participants during interaction. For example, Andrist and colleagues [2012] used a model to 

control the gaze shifts of a virtual character; two main conditions, mutual and referential gaze, 

were developed. Predominant mutual gaze elicited subjective positive feelings of connection, and 

referential gaze improved participants’ recall of information in the environment. This suggests that 

similar to findings with SRs, participants seem to follow the gaze of IVAs and engage in mutual eye 

gaze with IVAs [Andrist et al. 2012]. In a similar study, Wilms et al. [2010] showed that when IVAs’ 

gaze was contingent with participants’ gaze, JA evoked higher activity in the medial prefrontal 

cortex and posterior cingulate cortex relative to disjoint conditions. More recently, Willemse and 

colleagues [2018], using a gaze leading task on screen (iCub followed or not participants’ gaze), 

found that participants preferred the robot that exhibited JA behavior relative to the robot with a 

disjoint attention behavior. The robot with JA behavior was also rated as more human-like and as 

more likeable. These results showed a similar pattern to findings obtained with a physically 

embodied robot [Willemse and Wykowska 2019].  

 Development of cognitive architectures makes it now possible to implement ToM in IVAs. 

For instance, Buchsbaumm et al. [2005] proposed a framework inspired by simulation theory and 

hierarchical action structures to help IVAs understand human actions and emotions. The 

framework includes a motivational system in which certain actions (get/search/find) are associated 

with certain drives (feeding, self-defense, or socializing), and increasingly specific, sequentially 

organized actions can be defined for satisfying associated drives (e.g., feeding —% eat/search/get 

food —% jump/reach item). The system is designed to learn by imitation, that is, associate an 

observed action with a particular goal, and is able to identify goals, learn, and predict actions. 

Other approaches have implemented BToM to predict the behavior of the users, aiming at 

facilitating the navigation and increasing the users’ satisfaction within an immersive virtual 

environment with multiple agents, rather than a one-to-one interaction in a social context. The 

algorithm proposed by Narang et al. [2019] uses a probabilistic model that integrates observed 

social cues and actions with statistical priors regarding the user’s mental states. The model, used in 
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a real-time algorithm, endows multiple virtual agents with a ToM model. The algorithm perceives 

the proxemics and the gaze-based social cues from the users to reliably infer their underlying 

implicit intentions. For instance, the algorithm can differentiate between a user who is passing and 

a user who is aiming to talk/interact with a virtual agent. Altogether, this suggests that both IVAs 

and SRs can communicate using social signals and language. Further research employing the 

methods of cognitive neuroscience should be carried out to evaluate the added value of physical 

embodiment in SRs as compared to IVAs.  

6. Current Challenges  
 One of the central questions in HRI is: What are the necessary conditions for a robot to 

evoke similar social-cognitive mechanisms as in human–human interaction? Which robot features 

make us socially attune or synchronize with it, and represent its actions and interpret them in 

mentalistic terms? Which features are more impactful, physical or behavioral, and would their 

impact be different in the short-term versus long-term interactions? What role do preexisting 

expectations, stereotypes, and individual differences play when interpreting and reacting to 

observed robot behaviors (see Marchesi et al. [2019]; Spatola and Wykowska, [2021], and Bossi et 

al. [2020])? Answering these questions by no means suggests that it is desirable under all 

circumstances to design robots that evoke socio-cognitive mechanisms to the same extent as other 

humans. Whether it is ethically and morally acceptable, and in which application contexts, is open 

to ethical debate. On the one hand, robots that evoke similar social schemes as human interaction 

partners may have positive effects as SRs are perceived as more friendly, which might lead to 

higher acceptance, for instance, in elderly care. In fact, it might be that a senior person is more 

likely to, for example, follow medical recommendations (e.g., taking pills at a prescribed time of the 

day) when a robot elicits social attunement, as compared to when the robot is perceived as a 

machine. Whether this is indeed the case remains to be tested in future research. However, there 

might be application scenarios where social attunement is not desirable. For example, when a 

person is working side by side with a robot in a factory or wants to use the robot for a specific 

service. Studies that have examined the fit between a robot and the task it is supposed to execute 

suggest that anthropomorphic design features might help for tasks that require “core” human 
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skills, like reading emotions, but might be disadvantageous for tasks that require the robot to 

execute actions that a human would not want to execute (e.g., Smith et al. [2016] and Hertz and 

Wiese [2018]). Finally, it is also important to evaluate the ethical implications of creating the 

“illusion” that a robot is a social being “with a mind,” similar or equivalent to another human. 

Humans should always remain aware of the difference between a robot, which is just machine, and 

another human. The challenge is to make sure that ethical debate goes hand in hand with technical 

and scientific development and research.  

References  
H. Admoni and B. Scassellati. 2017. Social eye gaze in human–robot interaction: A review. J. Hum. 

Robot Interact. 6, 1, 25–63. DOI: https://doi.org/10.5898/JHRI.6.1.Admoni.  
H. Admoni, C. Bank, J. Tan, M. Toneva, and B. Scassellati. 2011. Robot gaze does not reflexively 

cue human attention. In Proceedings of the Annual Meeting of the Cognitive Science Society 
(Vol. 33, No. 33).  

T. Allison, A. Puce, and G. McCarthy. 2000. Social perception from visual cues: Role of the STS 
region. Trends Cogn. Sci. 4, 267–278. DOI: https://doi.org/10.1016/S1364-6613(00)01501-1.  

D. M. Amodio and C. D. Frith. 2006. Meeting of minds: The medial frontal cortex and social 
cognition. In Discovering the Social Mind. Psychology Press, 183–207.  

S. Andrist, T. Pejsa, B. Mutlu, and M. Gleicher. 2012. Designing effective gaze mechanisms for 
virtual agents. In Proceedings of the ACM Annual Conference on Human Factors in 
Computing Systems (CHI). ACM Press, Austin, TX, 705–714.  

L. Axelrod and K. Hone. 2005. Uncharted passions: User displays of positive affect with an 
adaptive affective system. In Lecture Notes in Computer Science (including subseries Lecture 
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). DOI: https://doi.org/
10.1007/11573548_ 114.  

W. A. Bainbridge, J. W. Hart, E. S. Kim, and B. Scassellati. 2011. The benefits of interactions with 
physically present robots over video-displayed agents. Int. J. Soc. Robotics 3, 1, 41–52. DOI: 
https: //doi.org/10.1007/s12369-010-0082-7.  

C. L. Baker, R. Saxe, and J. B. Tenenbaum. 2009. Action understanding as inverse planning. 
Cognition 113, 3, 329–349. DOI: https://doi.org/10.1016/j.cognition.2009.07.005.  

C. L. Baker, J. Jara-Ettinger, R. Saxe, and J. B. Tenenbaum. 2017. Rational quantitative attribution 
of beliefs, desires and percepts in human mentalizing. Nat. Hum. Behav. 1. DOI: https://
doi.org/10. 1038/s41562-017-0064.  

S. Baron-Cohen. 1997. Mindblindness: An Essay on Autism and Theory of Mind. MIT Press, 
Cambridge, MA. DOI: https://doi.org/10.7551/mitpress/4635.001.0001.  

Page  of 27 38



PR
EP
RI
NT

Accepted preprint Chapter 9 -  Theory of Mind and Joint Attention  

S. Baron-Cohen, R. Campbell, A. Karmiloff-Smith, J. Grant, and J. Walker. 1995. Are children with 
autism blind to the mentalistic significance of the eyes? Br. J. Dev. Psychol. 13, 379–398. 
DOI: http s://doi.org/10.1111/j.2044-835x.1995.tb00687.x.  

C. Bartneck and J. Forlizzi. 2004. A design-centred framework for social human–robot interaction. 
In Proceedings—IEEE International Workshop on Robot and Human Interactive 
Communication. DOI: https://doi.org/10.1109/roman.2004.1374827.  

A. P. Bayliss and S. P. Tipper. 2006. Gaze cues evoke both spatial and object-centered shifts of 
attention. Percept. Psychophys. 68, 2, 310–318. DOI: https://doi.org/10.3758/BF03193678.  

A. P. Bayliss, A. Frischen, M. J. Fenske, and S. P. Tipper. 2007. Affective evaluations of objects are 
influenced by observed gaze direction and emotional expression. Cognition 104, 3, 644–653. 
DOI: https://doi.org/10.1016/j.cognition.2006.07.012.  

G. Beattie and A. W. Ellis. 2017. The Psychology of Language and Communication. Taylor & 
Francis. DOI: https://doi.org/10.4324/9781315187198.  

M. Berlin, J. Gray, A. L. Thomaz, and C. Breazeal. 2006. Perspective taking: An organizing 
principle for learning in human–robot interaction. In Proceedings of the National Conference 
on Artificial Intelligence.  

F. Bianco and D. Ognibene. 2019. Functional advantages of an adaptive theory of mind for 
robotics: A review of current architectures. 2019 11th Computer Science and Electronic 
Engineering Conference, CEEC 2019—Proceedings. 139–143. DOI: https://doi.org/10.1109/
CEEC47804.2019. 8974334.  

A. Billard, Y. Epars, S. Calinon, S. Schaal, and G. Cheng. 2004. Discovering optimal imitation 
strategies. Rob. Auton. Syst. 47, 2-3, 69–77. DOI: https://doi.org/10.1016/
j.robot.2004.03.002.  

P. Billeke and F. Aboitiz. 2013. Social cognition in schizophrenia: From social stimuli processing to 
social engagement. Front. Psychiatry 4, 4. DOI: https://doi.org/10.3389/fpsyt.2013.00004.  

S. J. Blakemore. 2008. The social brain in adolescence. Nat. Rev. Neurosci. 9, 4, 267–277. DOI: 
https: //doi.org/10.1038/nrn2353.  

S. J. Blakemore and J. Decety. 2001. From the perception of action to the understanding of 
intention. Nat. Rev. Neurosci. 2, 8, 561–567. DOI: https://doi.org/10.1038/35086023.  

F. Bossi, C. Willemse, J. Cavazza, S. Marchesi, V. Murino, & A. Wykowska. 2020. The human brain 
reveals resting state activity patterns that are predictive of biases in attitudes toward 
robots. Sci Robs, 5(46). 

C. Breazeal, D. Buchsbaum,  J. Gray, D.Gatenby & B. Blumberg, 2005. Learning from and about 
others: Towards using imitation to bootstrap the social understanding of others by 
robots. Art life, 11(1-2), 31-62. 

C. Breazeal, M. Berlin, A. Brooks, J. Gray, and A. L. Thomaz. 2006. Using perspective taking to 
learn from ambiguous demonstrations. Rob. Auton. Syst. 54, 5, 385–393. DOI: https://
doi.org/10.1016/j.ro bot.2006.02.004.  

Page  of 28 38



PR
EP
RI
NT

Accepted preprint Chapter 9 -  Theory of Mind and Joint Attention  

C. Breazeal, J. Gray, and M. Berlin. 2009. An embodied cognition approach to mindreading skills 
for socially intelligent robots. Int. J. Rob. Res. 28, 5, 656–680. DOI: https://doi.org/10.1177/ 
0278364909102796.  

D. Buchsbaumm, B. Blumberg, C. Breazeal, and A. N. Meltzoff. 2005. A simulation-theory inspired 
social learning system for interactive characters. IEEE International Workshop on Robot and 
Human Interactive Communication, 2005. Nashville, TN, 2005, 85–90. DOI: https://
doi.org/10.1109/RO MAN.2005.1513761.  

L. J. Byom and B. Mutlu. 2013. Theory of mind: Mechanisms, methods, and new directions. Front. 
Hum. Neurosci. 7, 413. DOI: https://doi.org/10.3389/fnhum.2013.00413.  

F. Capozzi and J. Ristic. 2020. Attention AND mentalizing? Reframing a debate on social orienting 
of attention. Visual Cognit. 28, 97–105. DOI: https://doi.org/
10.1080/13506285.2020.1725206.  

T. Chaminade, D. Rosset, D. Da Fonseca, B. Nazarian, E. Lutcher, G. Cheng, and C. Deruelle. 2012. 
How do we think machines think? An fMRI study of alleged competition with an artificial 
intelligence. Front. Hum. Neurosci. 6, 103. DOI: https://doi.org/10.3389/
fnhum.2012.00103.  

L. J. Chang, A. Smith, M. Dufwenberg, and A. G. Sanfey. 2011. Triangulating the neural, 
psychological, and economic bases of guilt aversion. Neuron 70, 3, 560–572. DOI: https://
doi.org/10.1016/j.ne uron.2011.02.056.  

P. Chevalier, K. Kompatsiari, F. Ciardo, and A. Wykowska. 2019. Examining joint attention with 
the use of humanoid robots—A new approach to study fundamental mechanisms of social 
cognition. Psychon. Bull. Rev. 27, 2, 217–236. DOI: https://doi.org/10.3758/
s13423-019-01689-4.  

F. Ciardo, F. Beyer, D. De Tommaso, and A. Wykowska. 2020. Attribution of intentional agency 
towards robots reduces one’s own sense of agency. Cognition 194, 104109. DOI: https://
doi.org/10. 1016/j.cognition.2019.104109.  

M. Corbetta. 1998. Frontoparietal cortical networks for directing attention and the eye to visual 
locations: Identical, independent, or overlapping neural systems? Proc Nat Ac Sci, 95 (3) 
831-838; DOI: 10.1073/pnas.95.3.831 

N. Dahlbäck, A. Jönsson, and L. Ahrenberg. 1993. Wizard of Oz studies: Why and how. In 
Proceedings of the 1st International Conference on Intelligent user Interfaces. (1993 
February) 193–200.  

K. Dautenhahn, C. L. Nehaniv. 2002. Imitation as a Dual-Route Process Featuring Predictive and 
Learning Components: A Biologically Plausible Computational Model. In Imitation in 
Animals and Artifacts , MIT Press, pp.327-361. 

P. Dayan and N. D. Daw. 2008. Decision theory, reinforcement learning, and the brain. Cogn. 
Affect. Behav. Neurosci. 8, 429–453. DOI: https://doi.org/10.3758/CABN.8.4.429.  

M. M. A. De Graaf and B. F. Malle. 2019. People’s explanations of robot behavior subtly reveal 
mental state inferences, 2019 14th ACM/IEEE International Conference on Human–Robot 

Page  of 29 38



PR
EP
RI
NT

Accepted preprint Chapter 9 -  Theory of Mind and Joint Attention  

Interaction (HRI), Daegu, Korea (South). 239–248. DOI: https://doi.org/10.1109/
HRI.2019.8673308.  

M. M. A. De Graaf, S. B. Allouch, and S. Lutfi. 2016. What are people’s associations of domestic 
robots? Comparing implicit and explicit measures. In 2016 25th IEEE International 
Symposium on Robot and Human Interactive Communication (RO-MAN). IEEE, 1077–1083.  

L. M. J. De Sonneville, C. A. Verschoor, C. Njiokiktjien, V. Op het Veld, N. Toorenaar, and M. 
Vranken. 2002. Facial identity and facial emotions: Speed, accuracy, and processing 
strategies in children and adults. J. Clin. Exp. Neuropsychol. 24, 2, 200–213. DOI: https://
doi.org/10.1076/jcen .24.2.200.989.  

Y. Demiris and B. Khadhouri. 2006. Hierarchical attentive multiple models for execution and 
recognition of actions. Rob. Auton. Syst. 54, 361–369. DOI: https://doi.org/10.1016/
j.robot.2006.02.003.  

D. C. Dennett. 1971. Intentional systems. J. Philos. 68, 87–106. DOI: https://doi.org/10.2307/ 
2025382.  

D. C. Dennett. 1987. The Intentional Stance. MIT Press.  
S. Devin and R. Alami. 2016. An implemented theory of mind to improve human–robot shared 

plans execution. In ACM/IEEE International Conference on Human–Robot Interaction. 
DOI: https://doi.org/10.1109/HRI.2016.7451768.  

J. Driver, G. Davis, P. Ricciardelli, P. Kidd, E. Maxwell, and S. Baron-Cohen. 1999. Gaze perception 
triggers reflexive visuospatial orienting. Vis. Cogn. 6, 5, 509–540. DOI: https://doi.org/
10.1080/ 135062899394920.  

B. R. Duffy. 2003. Anthropomorphism and the social robot. In Robotics and Autonomous Systems. 
DOI: https://doi.org/10.1016/S0921-8890(02)00374-3.  

N. J. Emery. 2000. The eyes have it: The neuroethology, function and evolution of social gaze. 
Neurosci. Biobehav. Rev. 24, 581–604. DOI: https://doi.org/10.1016/
S0149-7634(00)00025-7.  

N. Epley, A. Waytz, and J. T. Cacioppo. 2007. On seeing human: A three-factor theory of 
anthropomorphism. Psychol. Rev. 114, 864–886. DOI: https://doi.org/
10.1037/0033-295X.114.4.864.  

F. Eyssel, F. Hegel, G. Horstmann, and C. Wagner. 2010. Anthropomorphic inferences from 
emotional nonverbal cues: A case study. In Proceedings—IEEE International Workshop on 
Robot and Human Interactive Communication. DOI: https://doi.org/10.1109/
ROMAN.2010.5598687.  

A. Fod, M. J. Mataric ́, and O. C. Jenkins. 2002. Automated derivation of primitives for movement 
classification. Auton. Rob. 12, 39–54. DOI: https://doi.org/10.1023/A:1013254724861.  

C. K. Friesen and A. Kingstone. 1998. The eyes have it! Reflexive orienting is triggered by 
nonpredictive gaze. Psychon. Bull. Rev. 5, 3, 490–495. DOI: https://doi.org/10.3758/
BF03208827.  

Page  of 30 38



PR
EP
RI
NT

Accepted preprint Chapter 9 -  Theory of Mind and Joint Attention  

A. Frischen, A. P. Bayliss, and S. P. Tipper. 2007. Gaze cueing of attention: Visual attention, social 
cognition, and individual differences. Psychol. Bull. 133, 4, 694–724. DOI: https://doi.org/
10.1037/ 0033-2909.133.4.694.  

K. Friston. 2005. A theory of cortical responses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1456, 
815–836. DOI: https://doi.org/10.1098/rstb.2005.1622.  

C. D. Frith and U. Frith. 2006. The neural basis of mentalizing. Neuron 50, 4, 531–534. DOI: 
https:// doi.org/10.1016/j.neuron.2006.05.001.  

U. Frith, J. Morton, and A. M. Leslie. 1991. The cognitive basis of a biological disorder: Autism. 
Trends Neurosci. 14, 10, 433–438. DOI: https://doi.org/10.1016/0166-2236(91)90041-r.  

S. R. Fussell, S. Kiesler, L. D. Setlock, and V. Yew. 2008. How people anthropomorphize robots. In  
HRI 2008—Proceedings of the 3rd ACM/IEEE International Conference on Human–Robot 

Interaction: Living with Robots. DOI: https://doi.org/10.1145/1349822.1349842.  
H. L. Gallagher, A. I. Jack, A. Roepstorff, and C. D. Frith. 2002. Imaging the intentional stance in a 

competitive game. NeuroImage 16, 814–821. DOI: https://doi.org/10.1006/nimg.2017.  
N. George, J. Driver, and R. J. Dolan. 2001. Seen gaze-direction modulates fusiform activity and its 

coupling with other brain areas during face processing. NeuroImage 13, 1102–1112. DOI: 
https://do i.org/10.1006/nimg.2001.0769.  

D. Ghiglino, C. Willemse, D. De Tommaso, F. Bossi, A. Wykowska. 2020. At first sight: robots’ 
subtle eye movement parameters affect human attentional engagement, spontaneous 
attunement and perceived human-likeness. Paladyn. Journal of Behavioral Robotics, 11:31-39 

O. Golan, S. Baron-Cohen, J. J. Hill, and Y. Golan. 2006. The “reading the mind in films” task: 
Complex emotion recognition in adults with and without autism spectrum conditions. Soc. 
Neurosci. 1, 2, 111–123. DOI: https://doi.org/10.1080/17470910600980986.  

B. Gonsior, S. Sosnowski, C. Mayer, J. Blume, B. Radig, D. Wollherr, and K. Kuhnlenz. 2011. 
Improving aspects of empathy and subjective performance for HRI through mirroring facial 
expressions. In Proceedings—IEEE International Workshop on Robot and Human 
Interactive Communication. DOI: https://doi.org/10.1109/ROMAN.2011.6005294.  

O. C. Görür, B. S. Rosman, G. Hoffman, and S. Albayrak. 2017. Toward integrating theory of mind 
into adaptive decision-making of social robots to understand human intention. 12th ACM/
IEEE International Conference on Human–Robot Interaction (HRI).  

J. Gray, C. Breazeal, M. Berlin, A. Brooks, and J. Lieberman. 2005. Action parsing and goal 
inference using self as simulator. In ROMAN 2005. IEEE International Workshop on Robot 
and Human Interactive Communication, (August 2005). IEEE, 202–209.  

H. M. Gray, K. Gray, D. M. Wegner. 2007. Dimensions of mind perception. Science 315, 5812, 619. 
DOI: https://doi.org/10.1126/science.1134475.  

A. N. Hampton, P. Bossaerts, and J. P. O’Doherty. 2008. Neural correlates of mentalizing-related 
computations during strategic interactions in humans. Proc. Nat. Acad. Sci. 105, 18, 6741–
6746. DOI: https://doi.org/10.1073/pnas.0711099105.  

Page  of 31 38



PR
EP
RI
NT

Accepted preprint Chapter 9 -  Theory of Mind and Joint Attention  

F. G. Happé. 1994. An advanced test of theory of mind: Understanding of story characters’ 
thoughts and feelings by able autistic, mentally handicapped, and normal children and 
adults. J. Autism Dev. Disord. 24, 2, 129–154. DOI: https://doi.org/10.1007/BF02172093.  

F. Happé, and U. Frith. 2014. Annual research review: Towards a developmental neuroscience of 
atypical social cognition. J. Child Psychol. Psychiatry 55, 553–577. DOI: https://doi.org/
10.1111/jcpp.12162.  

F. Hegel, S. Krach, T. Kircher, B. Wrede and G. Sagerer. 2008. Theory of mind (ToM) on robots: A 
functional neuroimaging study, 2008 3rd ACM/IEEE International Conference on Human–
Robot Interaction (HRI), Amsterdam, 335–342. DOI: https://doi.org/
110.1145/1349822.1349866.  

F. Heider. 1958. The Psychology of Interpersonal Relations. Psychology Press. DOI: https://
doi.org/10. 4324/9780203781159.  

N. Hertz and E. Wiese. 2018. Under pressure: Examining social conformity with computer and 
robot groups. Hum. Factors 60, 8, 1207–1218. DOI: https://doi.org/
10.1177/0018720818788473.  

E. A. Hoffman and J. V. Haxby. 2000. Distinct representations of eye gaze and identity in the 
distributed human neural system for face perception. Nat. Neurosci. 3, 80–84. DOI: https://
doi.org/10. 1038/71152.  

C. I. Hooker, K. A. Paller, D. R. Gitelman, T. B. Parrish, M. M. Mesulam, and P. J. Reber. 2003. 
Brain networks for analyzing eye gaze. Cogn. Brain Res. 17, 2, 406–418. DOI: https://
doi.org/10.1016/ S0926-6410(03)00143-5.  

C. M. Huang and B. Mutlu. 2012. Robot behavior toolkit: Generating effective social behaviors for 
robots. In HRI’12—Proceedings of the 7th Annual ACM/IEEE International Conference on 
Human– Robot Interaction. DOI: https://doi.org/10.1145/2157689.2157694.  

B. Huebner. 2010. Commonsense concepts of phenomenal consciousness: Does anyone care about 
functional zombies? Phenomenol. Cogn. Sci. 9, 133–155. DOI: https://doi.org/10.1007/
s11097-00991266.  

A. C. Jenkins, C. N. Macrae, and J. P. Mitchell. 2008. Repetition suppression of ventromedial 
prefrontal activity during judgments of self and others. Proc. Natl. Acad. Sci. U. S. A. 105, 11, 
4507– 4512. DOI: https://doi.org/10.1073/pnas.0708785105.  

M. Johnson and Y. Demiris. 2005. Perceptual perspective taking and action recognition. Int. J. 
Adv. Rob. Syst. 2, 4, 32. DOI: https://doi.org/https://doi.org/10.5772/5775.  

S. Kahl, & S. Kopp. 2018. A predictive processing model of perception and action for self-other 
distinction. Front Psych, 9, 2421. 

C. D. Kidd and C. Breazeal. 2004. Effect of a robot on user perceptions. In 2004 IEEE/RSJ 
International Conference on Intelligent Robots and Systems (IROS). DOI: https://doi.org/
10.1109/iros .2004.1389967.  

Page  of 32 38



PR
EP
RI
NT

Accepted preprint Chapter 9 -  Theory of Mind and Joint Attention  

S. Kiesler and J. Goetz. 2002. Mental models and cooperation with robotic assistants. CHI’02 
Extended Abstracts on Human Factors in Computing Systems. DOI: https://doi.org/
10.1145/506443.506491.  

K. Kompatsiari, V. Tikhanoff, F. Ciardo, G. Metta, and A. Wykowska. 2017. The importance of 
mutual gaze in human–robot interaction. In A. Kheddar, E. Yoshida, S. S. Ge, K. Suzuki, J.-J. 
Cabibihan, F. Eyssel, and H. He (Eds.), Social Robotics. Springer International Publishing, 
Cham, 443–452.  

K. Kompatsiari, J. Perez-Osorio, D. De Tommaso, G. Metta, and A. Wykowska. 2018. 
Neuroscientificallygrounded research for improved human–robot interaction. In IEEE 
International Conference on Intelligent Robots and Systems. DOI: https://doi.org/10.1109/
IROS.2018.8594441.  

K. Kompatsiari, F. Bossi & A. Wykowska. 2021. Eye contact during joint attention with a humanoid 
robot modulates oscillatory brain activity. Soc Cog Aff Neu (SCAN), 16, 383-392. 

S. Krach, F. Hegel, B. Wrede, G. Sagerer, F. Binkofski, & T. Kircher. 2008. Can machines think? 
Interaction and perspective taking with robots investigated via fMRI. PloS one, 3(7), e2597. 

G. Kuhn, I. Vacaityte, A. D. C. D’Souza, A. C. Millett, and G. G. Cole. 2018. Mental states modulate 
gaze following, but not automatically. Cognition 80, 1–9. DOI: https://doi.org/10.1016/
j.cognition. 2018.05.020.  

A. M. Leslie. 1987. Pretense and representation: The origins of “theory of mind.” Psychol. Rev. 94, 
4, 412-426. DOI: https://doi.org/10.1037/0033-295X.94.4.412.  

J. Li. 2015. The benefit of being physically present: A survey of experimental works comparing 
copresent robots, telepresent robots and virtual agents. Int. J. Hum. Comput. Stud. 77, 23-37. 
DOI: https: //doi.org/10.1016/j.ijhcs.2015.01.001.  

S. Marchesi, D. Ghiglino, F. Ciardo, J. Perez-Osorio, E. Baykara, and A. Wykowska. 2019. Do we 
adopt the intentional stance toward humanoid robots? Front. Psychol. 10. DOI: https://
doi.org/10. 3389/fpsyg.2019.00450.  

G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, ... L. Montesano. 2010. The iCub 
humanoid robot: An open-systems platform for research in cognitive development. Neural 
Netw. 23, Q14 1125–1134. DOI: https://doi.org/10.1016/j.neunet.2010.08.010.  

J. P. Mitchell, T. F. Heatherton, and C. N. Macrae. 2002. Distinct neural systems subserve person 
and object knowledge. Proc. Natl. Acad. Sci. U. S. A. 99, 23, 15238–15243. DOI: https://
doi.org/10. 1073/pnas.232395699.  

B. Mutlu, F. Yamaoka, T. Kanda, H. Ishiguro, and N. Hagita. 2009. Nonverbal leakage in robots: 
Communication of intentions through seemingly unintentional behavior. In Proceedings of 
the 4th ACM/IEEE International Conference on Human Robot Interaction. (March 2009). 
69–76.  

B. Mutlu, A. Terrell, and C. Huang. 2013. Coordination mechanisms in human–robot 
collaboration. In Proceedings of the HRI 2013 Workshop on Collaborative Manipulation.  

Page  of 33 38



PR
EP
RI
NT

Accepted preprint Chapter 9 -  Theory of Mind and Joint Attention  

Y. Nagai, M. Asada, and K. Hosoda. 2002. Developmental learning model for joint attention. In: 
IEEE International Conference on Intelligent Robots and Systems.  

S. Narang, A. Best, and D. Manocha. 2019. Inferring user intent using Bayesian theory of mind in 
shared avatar–agent virtual environments. IEEE Trans. Vis. Comput. Graph. 25, 5, (May 
2019). 2113–2122. DOI: https://doi.org/10.1109/TVCG.2019.2898800.  

A. Newell. 1994. Unified Theories of Cognition. Harvard University Press.  
A. C. Nobre, G. N. Sebestyen, D. R. Gitelman, M. M. Mesulam, R. S. Frackowiak, and C. D. Frith. 

1997. Functional localization of the system for visuospatial attention using positron emission 
tomography. Brain 120, 3, 515–533. DOI: https://doi.org/10.1093/brain/120.3.515.  

S. Nowicki Jr, and J. Carton. 1993. The measurement of emotional intensity from facial 
expressions. J. Soc. Psychol. 133, 5, 749–750. DOI: https://doi.org/
10.1080/00224545.1993.9713934.  

R. O’Reilly, T. Hazy, and S. Herd. 2012. The Leabra Cognitive Architecture: How to Play 20 
Principles with Nature and Win! The Oxford Handbook of Cognitive Science. DOI: https://
doi.org/10. 1093/oxfordhb/9780199842193.013.8.  

T. Ojala, M. Pietikainen, and T. Maenpaa. 2002. Multiresolution gray-scale and rotation invariant 
texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 
971–987. DOI: https://doi.org/10.1109/TPAMI.2002.1017623.  

Y. Okumura, Y. Kanakogi, T. Kanda, H. Ishiguro, and S. Itakura. 2013. Infants understand the 
referential nature of human gaze but not robot gaze. J. Exp. Child Psychol. 116, 1, 86–95. 
DOI: https://doi. org/10.1016/j.jecp.2013.02.007.  

P. C. Pantelis, L. Byrge, J. M. Tyszka, R. Adolphs, and D. P. Kennedy. 2015. A specific 
hypoactivation of right temporo-parietal junction/posterior superior temporal sulcus in 
response to socially awkward situations in autism. Soc. Cogn. Affect. Neurosci. 10, 10, 1348–
1356. DOI: https://doi.org/10. 1093/scan/nsv021.  

K. Pelphrey, J. Singerman, T. Allison, and G. McCarthy. 2003. Brain activation evoked by 
perception of gaze shifts: The influence of context. Neuropsychologia 41, 156–170. DOI: 
https://doi.org/10. 1016/s0028-3932(02)00146-x.  

J. Perez-Osorio and A. Wykowska. 2019. Adopting the intentional stance toward natural and 
artificial agents. Philos. Psychol. 33, 1-27. DOI: https://doi.org/
10.1080/09515089.2019.1688778.  

J. Perez-Osorio, H. J. Müller, E. Wiese, and A. Wykowska. 2015. Gaze following is modulated by 
expectations regarding others’ action goals. PLoS One 10, e0143614. DOI: https://doi.org/
10.1371/ journal.pone.0143614.  

J. Perez-Osorio, H. J. Möller, and A. Wykowska. 2017. Expectations regarding action sequences 
modulate electrophysiological correlates of the gaze-cueing effect. Psychophysiology 54, 942–
954. DOI: https://doi.org/10.1111/psyp.12854 .  

J. Perez-Osorio, D. De Tommaso, E. Baykara, and A. Wykowska. 2018. Joint action with iCub: A 
successful adaptation of a paradigm of cognitive neuroscience to HRI. In 27th IEEE 

Page  of 34 38



PR
EP
RI
NT

Accepted preprint Chapter 9 -  Theory of Mind and Joint Attention  

International Symposium on Robot and Human Interactive Communication (RO-MAN), 
Nanjing – Tai’an, 6 Pages. DOI: https://doi.org/10.1109/ROMAN.2018.8525536.  

J. Perez-Osorio, S. Marchesi, D. Ghiglino, M. Ince, and A. Wykowska. 2019. More than you expect: 
Priors influence on the adoption of intentional stance toward humanoid robots. In Lecture 
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and 
Lecture Notes in Bioinformatics). DOI: https://doi.org/10.1007/978-3-030-35888-4_12.  

M. Petit, S. Lallée, J. D. Boucher, G. Pointeau, P. Cheminade, D. Ognibene, E. Chinellato, U. 
Pattacini, I. Gori, U. Martinez-Hernandez, H. Barron-Gonzalez, M. Inderbitzin, A. Luvizotto, 
V. Vouloutsi, Y. Demiris, G. Metta, and P. F. Dominey. 2013. The coordinating role of 
language in realtime multimodal learning of cooperative tasks. IEEE Trans. Auton. Ment. 
Dev. 5, 3–17. DOI: https: //doi.org/10.1109/TAMD.2012.2209880.  

K. S. Ponnet, H. Roeyers, A. Buysse, A. de Clercq, and E. van der Heyden. 2004. Advanced 
mindreading in adults with Asperger syndrome. Autism 8, 249–266. DOI: https://doi.org/
10.1177/ 1362361304045214.  

D. Premack and G. Woodruff. 1978. Premack and Woodruff: Chimpanzee theory of mind. Behav. 
Brain Sci. 4, 1978, 515–526. DOI: http://dx.doi.org/10.1017/S0140525X00076512.  

D. Premack. 1990. The infant's theory of self-propelled objects. Cognition, 36(1), 1-16. 
A. Puce, T. Allison, S. Bentin, J. C. Gore, and G. McCarthy. 1998. Temporal cortex activation in 

humans viewing eye and mouth movements. J. Neurosci. 18, 6, 2188–2199. DOI: https://
doi.org/10. 1523/JNEUROSCI.18-06-02188.1998.  

N. C. Rabinowitz, F. Perbet, H. F. Song, C. Zhang, and M. Botvinick. 2018. Machine theory of mind. 
In 35th International Conference on Machine Learning, ICML 2018.  

H. Richardson, G. Lisandrelli, A. Riobueno-Naylor, and R. Saxe. 2018. Development of the social 
brain from age three to twelve years. Nat. Commun. 9, 1, 1–12. DOI: https://doi.org/10.1038/ 
s41467-018-03399-2.  

L. D. Riek, T. C. Rabinowitch, B. Chakrabartiz, and P. Robinson. 2009. Empathizing with robots: 
Fellow feeling along the anthropomorphic spectrum. In 2009 3rd International Conference 
on Affective Computing and Intelligent Interaction and Workshops, ACII 2009. DOI: https://
doi.org/10.1109/AC II.2009.5349423.  

A. Sadeghipour and S. Kopp. 2011. Embodied gesture processing: Motor-based integration of 
perception and action in social artificial agents. Cognit. Comput. 3, 3, 419–435. DOI: https://
doi.org/10. 1007/s12559-010-9082-z.  

R. Saxe and N. Kanwisher. 2003. People thinking about thinking people: The role of the 
temporoparietal junction in “theory of mind.” NeuroImage 19, 4, 1835–1842. DOI: https://
doi.org/10.1016/ s1053-8119(03)00230-1.  

B. M. Scassellati. 2001. Foundations for a Theory of Mind for a Humanoid Robot. MIT Press. DOI: 
https://doi.org/10.1037/e446982006-001.  

B. Scassellati. 2002. Theory of mind for a humanoid robot. Auton. Robots 12, 1, 13–24. DOI: 
https:// doi.org/10.1023/A:1013298507114.  

Page  of 35 38



PR
EP
RI
NT

Accepted preprint Chapter 9 -  Theory of Mind and Joint Attention  

S. Schaal. 1997. Learning from demonstration. In Advances in Neural Information Processing 
Systems. DOI: https://doi.org/10.1007/978-1-4419-1428-6_4646.  

K. R. Scherer and U. Scherer. 2011. Assessing the ability to recognize facial and vocal expressions of 
emotion: Construction and validation of the Emotion Recognition Index. J. Nonverbal Behav. 
35, 4, 305. DOI: https://doi.org/10.1007/s10919-011-0115-4.  

L. Schilbach, B. Timmermans, V. Reddy, A. Costall, G. Bente, T. Schlicht, and K. Vogeley. 2013. 
Toward a second-person neuroscience. Behav. Brain Sci. 36, 4, 393–414. DOI: https://
doi.org/10. 1017/S0140525X12000660.  

J. L. Schreck, O. B. Newton, J. Song, and S. M. Fiore. 2019. Reading the mind in robots: How 
theory of mind ability alters mental state attributions during human–robot interactions. 
Proc. Hum. Factors Ergon. Soc. Annu. Meet. 63, 1, 1550–1554. DOI: https://doi.org/
10.1177/1071181319631414.  

T. Singer. 2012. The past, present and future of social neuroscience: A European perspective. 
NeuroImage 61, 2, 437–449. DOI: https://doi.org/10.1016/j.neuroimage.2012.01.109.  

M. A. Smith, M. M. Allaham, and E. Wiese. 2016. Trust in automated agents is modulated by the 
combined influence of agent and task type. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 60, 
1, 206–210. DOI: https://doi.org/10.1177/1541931213601046.  

N. Spatola, and A. Wykowska. 2021. The personality of anthropomorphism: How the need for 
cognition and the need for closure define attitudes and anthropomorphic attributions toward 
robots. Comp Hum Beh, 122. https://doi.org/10.1016/j.chb.2021.106841. 

S. Sul, B. Gürog ̆lu, E. A. Crone, and L. J. Chang. 2017. Medial prefrontal cortical thinning mediates 
shifts in other-regarding preferences during adolescence. Sci. Rep. 7, 1, 1–10. DOI: https://
doi.org/ 10.1038/s41598-017-08692-6.  

L. Takayama, D. Dooley, and W. Ju. 2011. Expressing thought: Improving robot readability with 
animation principles. In Proceedings of the ACM/IEEE International Conference on 
Human–Robot Interaction (HRI). (March 2011). ACM Press. Lausanne, Switzerland, 69–76.  

C. Teufel, P. C. Fletcher, and G. Davis. 2010. Seeing other minds: Attributed mental states 
influence perception. Trends Cognit. Sci. 14, 8, 376–382. DOI: https://doi.org/10.1016/
j.tics.2010.05.005.  

S. Thellman, A. Silvervarg, and T. Ziemke. 2017. Folk-psychological interpretation of human vs. 
humanoid robot behavior: Exploring the intentional stance toward robots. Front. Psychol. 8, 
1962. DOI: https://doi.org/10.3389/fpsyg.2017.01962.  

J. G. Trafton, A. C. Schultz, N. L. Cassimatis, L. M. Hiatt, D. Perzanowski, D. P. Brock, M. D. 
Bugajska, F. E. Mintz, and W. Adams. 2006. Communicating and collaborating with robotic 
agents. Cognition and multi-agent interaction: From cognitive modeling to social simulation. 
Sun, R. (Ed.). Cambridge University Press, 252-278. 

F. Van Overwalle and K. Baetens. 2009. Understanding others’ actions and goals by mirror and 
mentalizing systems: A meta-analysis. NeuroImage 48, 3, 564–584. DOI: https://doi.org/
10.1016/j.neuroi mage.2009.06.009.  

Page  of 36 38



PR
EP
RI
NT

Accepted preprint Chapter 9 -  Theory of Mind and Joint Attention  

K. E. Vanderbilt, D. Liu, and G. D. Heyman. 2011. The development of distrust. Child Dev. 82, 5, 
1372–1380. DOI: https://doi.org/10.1111/j.1467-8624.2011.01629.x.  

V. Venkatesh and F. D. Davis. 2000. A theoretical extension of the technology acceptance model: 
Four longitudinal field studies. Manage. Sci. 46, 2, 186–204. DOI: https://doi.org/10.1287/
mnsc.46.2. 186.11926.  

P. F. Verschure, T. Voegtlin, and R. J. Douglas. 2003. Environmentally mediated synergy between 
perception and behaviour in mobile robots. Nature 425, 620–624. DOI: https://doi.org/
10.1038/nature 02024.  

S. Vinanzi, M. Patacchiola, A. Chella, and A. Cangelosi. 2019. Would a robot trust you? 
Developmental robotics model of trust and theory of mind. Philos. Trans. R. Soc. B. 374, 1771, 
20180032. DOI: https://doi.org/10.1098/rstb.2018.0032.  

P. Viola and M. Jones. 2001. Rapid object detection using a boosted cascade of simple features. In 
Computer Vision and Pattern Recognition, 2001. Proceedings of the 2001 IEEE Computer 
Society Conference on CVPR 2001, Vol. 1. IEEE, New York, NY, I–511.  

H. Wellman. 1990. Children’s Theories of Mind. MIT Press, Cambridge, MA. 
B. Wicker, F. Michel, M. A. Henaff, and J. Decety. 1998. Brain regions involved in the 
perception of gaze: A PET study. NeuroImage 8, 2, 221–227. DOI: https://doi.org/10.1006/
nimg.1998.0357.  

E. Wiese, A. Wykowska, J. Zwickel, and H. J. Möller. 2012. I see what you mean: How attentional 
selection is shaped by ascribing intentions to others. PLoS One 7, 9, e45391. DOI: https://
doi.org/ 10.1371/journal.pone.0045391.  

E. Wiese, J. Zwickel, and H. J. Müller. 2013. The importance of context information for the spatial 
specificity of gaze cueing. Atten. Percept. Psychophys. 75, 967–982. DOI: https://doi.org/
10.3758/ s13414-013-0444-y.  

E. Wiese, A. Wykowska, and H. J. Müller. 2014. What we observe is biased by what other people 
tell us: Beliefs about the reliability of gaze behavior modulate attentional orienting to gaze 
cues. PLoS One 9, 4. DOI: https://doi.org/10.1371/journal.pone.0094529.  

E. Wiese, A. Abubshait, B. Azarian, and E. J. Blumberg. 2019. Brain stimulation to left prefrontal 
cortex modulates attentional orienting to gaze cues. Philos. Trans. R. Soc. B 374, 1771, 
20180430. DOI: https://doi.org/10.1098/rstb.2018.0430.  

C. Willemse and A. Wykowska. 2019. In natural interaction with embodied robots, we prefer it 
when they follow our gaze: A gaze-contingent mobile eyetracking study. Philos. Trans. R. Soc. 
B 374, 1771, 20180036. DOI: https://doi.org/10.1098/rstb.2018.0036.  

C. Willemse, S. Marchesi, and A. Wykowska. 2018. Robot faces that follow gaze facilitate 
attentional engagement and increase their likeability. Front. Psychol. 9, 70. DOI: https://
doi.org/10.3389/fpsyg. 2018.00070.  

M. Wilms, L. Schilbach, U. Pfeiffer, G. Bente, G. R. Fink, and K. Vogeley. 2010. It’s in your eyes— 
Using gaze-contingent stimuli to create truly interactive paradigms for social cognitive and 

Page  of 37 38



PR
EP
RI
NT

Accepted preprint Chapter 9 -  Theory of Mind and Joint Attention  

affective neuroscience. Soc. Cogn. Affect. Neurosci. 5, 98–107. DOI: https://doi.org/10.1093/
scan/nsq024.  

H. Wimmer and J. Perner. 1983. Beliefs about beliefs: Representation and constraining function of 
wrong beliefs in young children’s understanding of deception. Cognition 13, 1, 103–128. DOI: 
http s://doi.org/10.1016/0010-0277(83)90004-5.  

A. Wykowska, E. Wiese, A. Prosser, and H. J. Müller. 2014. Beliefs about the minds of others 
influence how we process sensory information. PLoS One 9, 4, e94339.  

A. Wykowska, J. Kajopoulos, M. Obando-Leitón, S. S. Chauhan, J. J. Cabibihan, and G. Cheng. 
2015. Humans are well tuned to detecting agents among non-agents: Examining the 
sensitivity of human perception to behavioral characteristics of intentional systems. Int. J. 
Soc. Rob. 7. DOI: https://doi.or g/10.1007/s12369-015-0299-6.  

A. Wykowska, 2021. Robots as mirrors of the human mind. Current Directions in Psychological 
Science, 30 (1), 34-40. 

A. Wykowska, 2020. Social robots to test flexibility of human social cognition. International 
Journal of Social Robotics, 12, 1203–1211 

T. Xu, H. Zhang, and C. Yu. 2016. See you see me: The role of eye contact in multimodal human– 
robot interaction. ACM Trans. Interact. Intell. Syst. (TiiS) 6, 1, 1–22. DOI: https://doi.org/
10.1145/ 2882970.  

J. Złotowski, D. Proudfoot, K. Yogeeswaran, and C. Bartneck. 2015. Anthropomorphism: 
Opportunities and challenges in human–robot interaction. Int. J. Soc. Rob. 7, 347–360. DOI: 
https://doi.org/ 10.1007/s12369-014-0267-6.  

Page  of 38 38


	Titlepage
	ToM
	1. Social Cognitive Neuroscience and SIA


